期刊文献+

基于卷积神经网络的P300电位检测及在脑机接口系统中的应用 被引量:4

P300 potential detection based on convolutional neural network and its application in brain-computer interface system
下载PDF
导出
摘要 为提取更深层、更原始的脑电信号特征,提高基于P300电位的脑机接口系统的性能,提出将卷积神经网络(CNN)应用到脑机接口系统的P300电位检测.首先,根据脑电信号的时间和空间特征,构建CNN的网络结构.然后,对脑电信号进行预处理,采用卷积层和下采样层进行特征提取.最后,通过全连接层实现P300电位的检测.结果显示,卷积神经网络对P300电位具有很好的特征学习能力,取得了较好的分类结果,为进一步提高脑机接口系统的性能提供了有效手段. In order to extract deeper,rawer features of EEG signals and improve the performance of braincomputer interface system based on P300 potential,the convolutional neural network( CNN) was used to detect P300 potential in a brain-computer interface system. First,the network structure of CNN was constructed according to the temporal and spatial feature of EEG signals. Then,the EEG signals were preprocessed,and feature was extracted using convolutional layers and downsampling layers,and the detection of the P300 was realized through a fully connected layer. The results showed that the CNN had a good ability for feature learning of P300,and had achieved better classification results,which provided an effective means for further improving the performance of brain-computer interface systems.
作者 李奇 卢朝华 LI Qi,LU Zhao-hua(School of Computer Science and Technology , Changchun University of Science and Technology , Changchun 130022, China)
出处 《吉林师范大学学报(自然科学版)》 2018年第3期116-122,共7页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(61773076)
关键词 脑机接口 P300 卷积神经网络 brain-computer interface P300 potential convolutional neural network
  • 相关文献

参考文献3

二级参考文献67

  • 1李同磊,刘伯强,李可,于兰兰.基于脑电信号的手指动作识别[J].山东科学,2006,19(1):1-5. 被引量:2
  • 2Wolpaw JR, Birbaumer N, Heetderks W, et al. Brain-computer interface technology:a review of the first international meeting [J ]. IEEE Trans Rehabil Eng, 2000, 8(2) :164- 173.
  • 3Quadrianto N, GuanCunTai, Dat TH, et al. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface[A] In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering [C]. Piscataway, NJ, USA:IEEE, 2007. 219- 225.
  • 4Peters, BO, Pfurtscheller G., Flyvbjerg H. Automatic differentiation of multichannel EEG signals [ J]. Transactions on Biomedical Engineering 2001,48(1) : 111 - 116.
  • 5Wu Wei, Gao Xiaorong, Gao Shangkai. One-versus-the-best (OVR) algorithm: an extention of common spacial patterns(CSP) algorithm to muti-class case [ A ]. In : Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society,[C]. Piscataway, NJ, USA: IEEE-EMBS, 2005, 2387- 2390.
  • 6A. Schloegl, K. Lugger, G. Pfurtscheller. Using Adaptive Autoregressive Parameter for a Brain-Computer-Interface experiment [A]. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ], Piscataway, NJ, USA: IEEE, 1997.1533-1535.
  • 7Keim, ZA, Aunon JI. A new mode of communication between man and his surroundings[J]. IEEE Trans on Biomedical Engineering, 1990,31(12) : 1209 - 1214.
  • 8Wang Yijun, Gao Shangkai, Gao Xiaorong. Common spacial pattern method for charmel selection in motor imagery based brain-computer imerface [ A ]. In: Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ]. Piscataway, N J, USA: IEEE,2005. 5392 - 5395.
  • 9Molina G. G.. BCI adaptation using incremental-SVM learning[ A]. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering[C]. Piscataway, N J, USA: IEEE,2007. 337 - 341.
  • 10Pfurtscheller G, Muller-Putz, GR, Schlogl A, et al. 15 years of BCI research at graz university of technology current projects [ J ]. IEEE Trans Neural Syst Rehabil Eng, 2006,14(2):205- 210.

共引文献645

同被引文献20

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部