期刊文献+

基于医疗类别的电子病历命名实体识别研究 被引量:10

Research on Electronic Medical Record Named Entity Recognition Based on Medical Categories
下载PDF
导出
摘要 基于电子病历命名实体识别对智慧医疗和医疗知识图谱的构建具有重要意义,提出一种基于医疗类别的命名实体识别方法。首先,针对电子病历语料中实体特点进行深度挖掘,将电子病历分为4类医疗类别;然后,对各医疗类别分别构建特征集,并使用条件随机场模型对身体部位、症状和体征、检查与检验、疾病与诊断、治疗等5类命名实体进行命名实体识别;最后,将基于医疗类别特征集识别效果和通用特征集的识别结果进行对比。实验结果表明,基于医疗类别的电子病历命名实体识别效果显著提升,可以满足应用需求。 Based on the named entity recognition in electronic medical records is of great significance to medical treatment AI and the construction of medical knowledge graph,a proposal has been made of a named entity recognition method based on medical categories. First, the electronic medical record is to be divided into 4 categories according to the entity characteristics of the corpus of electronic medical records. Then, the feature sets are to be constructed respectively for the medical categories, followed by an identification of the named entities of such five named entities as body parts, symptoms and signs, inspection and test, disease and diagnosis, and treatment by using the conditional random field model. Finally, a comparison has been made between the recognition results based on medical class feature sets and the general feature sets. The results show that the effect of named entity recognition based on medical categories has been significantly improved, enabling it to meet the application requirement effectively.
作者 李飞 朱艳辉 王天吉 徐啸 冀相冰 LI Fei1,2, ZHU Yanhui1, 2, WANG Tianji1,2, XU Xiao1,2, JI Xiangbing1, 2(1. College of Computer, Hunan University of Technology, Zhuzhou Hunan 412007, China; 2. Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Zhuzhou Hunan 412007, China)
出处 《湖南工业大学学报》 2018年第4期61-66,共6页 Journal of Hunan University of Technology
基金 国家自然科学基金资助项目(61402165) 湖南省教育厅基金资助重点项目(15A049) 国家工商行政管理总局科研基金资助项目(2014GSZJWT001KT006) 湖南工业大学科研基金资助重点项目(17ZBLWT001KT006) 湖南省研究生科研创新基金资助项目(CX2017B688)
关键词 电子病历 命名实体识别 条件随机场 医疗类别 electronic medical record named entity recognition conditional random field medical category
  • 相关文献

参考文献2

二级参考文献145

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2林东,邵军力.医学诊疗领域通用专家系统设计与实现[J].自动化学报,1995,21(3):380-382. 被引量:6
  • 3Burr Settles. Biomedical named entity recognition using conditional random fields and rich feature sets[C]//Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications. Geneva, Switzerland ; COLING, 2004 : 104 -- 107.
  • 4Hieuxuan. FlexCRFs, flexible conditional random fields [EB/OL]. http,//www, jaist, ae. jp. html.
  • 5中国科学院计算技术研究所.汉语词法分析工具ICT-CLAS[EB/0L].http://www.nlp.org.cn/.
  • 6Zhang Leo Maximum entropy modeling toolkit for python and C+ + [EB/OL]. 2007-07. http:Hhomepages, inf. ed. ac. uk/s0450736/maxent_toolkit, html.
  • 7Chang Chihchung, Lin Chihjen. LIBSVM -- a library for support vector machines[EB/OL], http://www, csie.ntu. edu. tw/-cjlin/libsvm.
  • 8中华人民共和国卫生部.电子病历基本规范(试行)[Online],available:http://www.gov.cn/zwgk/2010-03/04/content_1547432.htm,December27,2013.
  • 9Wasserman R C. Electronic medical records (EMRs), epi- demiology, and epistemology: reflections on EMRs and fu- ture pediatric clinical research. Academic Pediatrics, 2011, 11(4): 280-287.
  • 10Uzuner O, Mailoa J, Ryan R, Sibanda T. Semantic relations for problem-oriented medical records. Artificial Intelligence in Medicine, 2010, 50(2): 63-73.

共引文献157

同被引文献79

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部