摘要
为了提高隐语义模型在数据稀疏情况下推荐结果的质量,提出一种带有社交正则化项和标签正则化项的隐语义模型.根据用户社交网络和物品标签的信息,设计出描述用户和物品概况的正则化项,并利用用户对物品的历史评分计算得到用户评分偏好,将这三项引入矩阵分解目标函数中,进一步约束目标函数,最后通过梯度下降法去优化模型参数,得到推荐结果.为了验证算法的有效性,在Last.fm数据集上进行实验,实验结果表明,本文算法的推荐质量优于其他传统推荐算法.
In order to improve the recommendation performance of latent factor model under the circumstance of data sparseness, a latent factor model with the social regularization and the tag regularization is proposed.According to the user's social network and the item's tag information, the regularization depicting the profiles of the user and the item is designed, and the user rating preferences calculated by using user's history rating of items.These three items are introduced into the objective function of the matrix decomposition to further constrain the objective function. Finally, the gradient descent method is used to optimize the model parameters and get the recommendation result. To verify the efficacy of the proposed method, the model is tested by the Last.fm data set,and the experimental results show that the recommendation algorithm proposed in this study has a better recommendation performance compared with other traditional recommendation algorithms.
作者
彭嘉恩
邓秀勤
刘太亨
刘富春
李文洲
Peng Jia-en;Deng Xiu-qin;Liu Tai-heng;Liu Fu-chun;Li Wen-zhou(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China;School of Computers,Guangdong University of Technology,Guangzhou 510006,China)
出处
《广东工业大学学报》
CAS
2018年第4期45-50,60,共7页
Journal of Guangdong University of Technology
基金
国家自然科学基金资助项目(61673122
61273118)
广东省公益研究与能力建设专项资金资助项目(2015A030402006)
广东工业大学研究生创新创业及竞赛资助项目(2016YJSCX036
2017YJSCX039)
关键词
隐语义模型
社交网络
标签信息
推荐算法
latent factor model
social network
tag information
recommendation algorithm