期刊文献+

分数阶非线性时滞微分方程参数和阶的估计方法

Parameters and Order Estimation Methods of Fractional Nonlinear Delay Differential Equation
下载PDF
导出
摘要 分数阶非线性时滞微分方程具有广泛的应用,因而根据部分观测值估计方程的参数和阶有重要意义。首先通过预估-校正法求出方程组的预测值,结合部分观测值建立优化目标函数,再采用鸡群算法给出最优参数和阶的估计值。通过计算机模拟,验证了方法的有效性。 Fractional-order delay nonlinear dynamics system is used more and more widely in science and engineering.Based on partial observed data,fitting the parameters and order plays an important role in practical problem.Given the guess values of parameters and order,the prediction values of differential equations' solutions can be computed by the predictor-corrector scheme algorithm,and the optimization objective function will be constructed by using difference between observed data and prediction values.So the optimal parameters and order are searched by chicken swarm optimization method.Finally,by computer simulation,the algorithm is proved valid.
作者 王福昌 张丽娟 靳志同 WANG Fu-chang;ZHANG Li-juan;JIN Zhi-tong(Department of Basic Courses,Institute of Disaster Prevention,Langfang 065201,China)
出处 《滨州学院学报》 2018年第2期32-37,共6页 Journal of Binzhou University
基金 防灾科技学院教育研究与教学改革项目(JY2017B10) 防灾科技学院研究生课程建设与改革项目(YJG2015001)
关键词 分数阶 非线性时滞微分方程 参数估计 鸡群算法 fractional order nonlinear delay differential equation parameter estimation chicken swarm optimization algorithm
  • 相关文献

参考文献3

二级参考文献18

  • 1陈子仪,康立山.多父体杂交演化算法求解约束优化问题[J].武汉大学学报(信息科学版),2006,31(5):440-443. 被引量:15
  • 2Mackey M C. Glass L. Oscillation and chaos in physiological control system[J]. Sci., 1977, 197 287 289.
  • 3Farmer J D. Chaotic attractors of infinite-dimensional dynamical systems[J]. Phys. D.: Nonl. Phen. 1982.
  • 4Bjorck A. Numerical methods for least squares problems[M]. SIAM Phil., 1996.
  • 5Tarantola A. Inverse problem theory and methods for model parameter estimation[M]. Amsterdam Elsevier, 2009.
  • 6Andreas Kirsch. An introduction to the mathematical theory of inverse problem [M]. New York Springer-Verlag, 1996.
  • 7Mezura-Montes E, Coello Coello C A. Adding a diversity mechanism to a simple evolution strategy to solve constrained optimization problems[C]. Canberra, Australia: the 2003 Congress on Evolutionary Computation (CEC'03), 2003.
  • 8Morris W. Hirsch, Stephen Smale, Robert L. Devaney, differential equations, dynamical systems, and linear algebra[M]. San Diego, CA: Academic Press, 2004.
  • 9MarkM,Meerscheart.数学建模方法与分析[M].北京:北京机械工业出版社,2005.
  • 10Maly T, Petzold L. Numerical methods and software for sensitivity analysis of differential-algebraic systems[J]. Appl. Numer. Math., 1996, 20: 57-79.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部