期刊文献+

射频RSS聚类与多传感器融合的室内定位算法 被引量:5

RF RSS-based clustering and multi-sensor integration location algorithm
下载PDF
导出
摘要 为有效解决RSS定位算法中的定位点跳变问题,提出一种基于射频RSS聚类与多传感器融合的室内定位算法。将定位坐标点与MT2503传感器接收的RSS信号加权聚类均值进行绑定,形成室内定位指纹库,融合LSM303DLHC传感器勘测定位终端实时朝向,补偿RSS信号受多径效应、阴影衰落等影响造成的误差,采用欧氏距离加权平均算法解算实时位置点坐标。实验结果表明,该算法抗RSSI扰动能力强,定位精度较高。 To solve the positioning point transition problem in RSS localization algorithm effectively,an algorithm based on RF RSS clustering and multi-sensor fusion was put forward.The coordinate points were bounded to the weighted average clustering of the RSS signal which were received from Bluetooth RF.An indoor positioning fingerprint was then constituted.To mark the orientations,the terminal fused the accelerometer sensors LSM303DLHC.The errors caused by the multi-path effect and shadow fading of the RSS signal were compensated.A reverse algorithm of Euclidean best matching was used to calculate the coordinate points.The results show that the proposed algorithm has strong ability of anti-RSSI perturbation and has higher accuracy in positioning.
作者 王芳 WANG Fang(Publishment and Media Department, Chongqing Business Vocational College, Chongqing 401331, Chin)
出处 《计算机工程与设计》 北大核心 2018年第6期1553-1558,1585,共7页 Computer Engineering and Design
基金 重庆市高等教育教学改革研究基金项目(153299)
关键词 RSS加权聚类 室内定位 三轴加速度计 欧氏最佳匹配 位置点坐标 RSS weighted average clustering indoor location LSM303DLHC Euclidean best matching coordinate points
  • 相关文献

参考文献5

二级参考文献65

  • 1张明华,张申生,曹健.无线局域网中基于信号强度的室内定位[J].计算机科学,2007,34(6):68-71. 被引量:66
  • 2谷红亮,史元春,申瑞民,陈渝.一种用于智能空间的多目标跟踪室内定位系统[J].计算机学报,2007,30(9):1603-1611. 被引量:18
  • 3Di Flora C,Ficco M,Russo S.Indoor and outdoor location based services for portable wireless devices [C] //Proc 25th IEEE International Conference on Distributed Computing Sys-tems Workshops,2005.
  • 4LIU H,Darabi H,Banerjee P.Survey of wireless indoor posi-tioning techniques and systems [J].IEEE Trans on Systems,Man,and Cybernetics,2007,37(6) :1067-1080.
  • 5Robin W Ouyang,Albert K Wong.Indoor localization via dis-criminatively regularized least square classification [J],Interna-tional Journal of Wireless Information Networks,2011,18(2):57-72.
  • 6WaqasurRehman,Eyal de Lara,Stefan Saroiu.CILoS:A CD-MA indoor localization system [D].Department of ComputerScience,University of Toronto,UbiComp,2008:21-24.
  • 7ZHANG V Y,WONG A K.Combined AOA and TOA NLOSLocalization with nonlinear programming in severe multipathenvironments,[ C]// IEEE Wireless Communications andNetworking Conference,2009.
  • 8Qasem H,Reindl L.Unscented and extended kalman estimators(or non linear indoor tracking using distance measurements[C] //4th Workshop on Positioning? Navigation and Communi-cation,2007:177-181.
  • 9CHEN X,Schonfeld D,Khokhar A.Localization and trajectoryestimation of mobile objects with a single sensor [C] // IEEE/SP 14th Workshop on Statistical Signal Processing,2007:363-367.
  • 10Nuno Barrau G,Paez Borrallo J M.A new location estimationsystem for wireless networks based on linear discriminant func-tions and hidden markov models [J].EURASIP J Applied Sig-nal Processing,2006:159-159.

共引文献228

同被引文献27

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部