期刊文献+

一种分块自适应压缩感知图像重构算法

Image Reconstruction Algorithm for Compressed Sensing Based on Discrete Cosine Transform
下载PDF
导出
摘要 CS理论中,在离散余弦变换下使用OMP算法重构图像时需要较高的测量值可以获得较好的重构效果,但是存在重构图像模糊的问题。为此,提出了基于离散余弦变换的图像分块自适应正交匹配追踪(BAD-OMP)算法。基于分块压缩感知技术,对图像进行均匀分块处理,根据图像块稀疏性进行自适应采样,再用均值滤波算法平滑处理,从而减少重构所需的测量值,降低块效应。仿真结果表明,采样率取0.1~0.35时,BAD-OMP算法重构图像的PSNR值较OMP算法的PSNR值高9~11 d B,实现了在低采样率下获得较高的重构质量。 In the CS theory,the use of OMP algorithm to reconstruct the image under discrete cosine transform requires a higher measurement value to obtain a better reconstruction effect,but there is a problem of reconstructing the image blur. In this paper,a Block-based Adaptive based on Discrete cosine transform with OMP( BAD-OMP) algorithm is proposed. Based on the block compression sensing technique,the image is uniformly punctured,and the adaptive sampling is carried out according to the sparseness of the image block,and the mean filtering algorithm is used to smooth the processing,thus reducing the required measurement value and reducing the blocking artifacts. The simulation results show that the PSNR value of the reconstructed image of BAD-OMP algorithm is 9 ~ 11 d B higher than the PSNR value of OMP algorithm,and the higher reconstruction quality is achieved at low sampling rate.
作者 刘紫燕 许敏 唐虎 LIU Ziyan1,XU Min2,TANG Hu1(1.College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;2.Medical School of Guizhou University,Guizhou University,Guiyang 550025,Chin)
出处 《电视技术》 2018年第4期31-35,共5页 Video Engineering
基金 贵州省科学技术基金项目(黔科合基础[2016]1054) 贵州省联合资金项目(黔科合LH字[2017]7226号) 贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788)
关键词 压缩感知 离散余弦变换 图像分块 自适应采样 块效应 Compressed Sensing Discrete Cosine Transform Block-based Image Reconstruction Adaptive Sampling Blocking Artifacts
  • 相关文献

参考文献4

二级参考文献35

  • 1贾萍,张宝菊,刘军.改进的层式DCT编码[J].电视技术,2007,31(3):16-17. 被引量:4
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3Donoho D L. Compressed Sensing [J]. IEEE Trans -actions on Information Theory, 2006, 52(4) : 1289 -1306.
  • 4Candes E. Compressive Sampling [ C]. Madrid, Spain: Proceedi -ngs of International Congress of Mathematicians, 2006: 1433 - 1452.
  • 5Candies E, Romberg J. Sparsity and Incoherence in Com- pressive Sampling [ J]. Inverse Problems, 2007, 23 (3) : 969 - 985.
  • 6Tropp J A, Gilbert A C. Signal Recovery From Rando - M Measurements Via Orthogonal Matching Pursuit [J]. IEEE Transactions on Information Theory, 2007, 53 (12): 4655 - 4666.
  • 7Candes E, Tao T. Decoding by Linear Programming [J]. IEEE Transactions on Information Theory, 2005, 51 (12) : 4203 - 4215.
  • 8Candes E, Romberg J, Tao T. Stable Signal Recovery From Incomplete and Inaccurate Measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59 (8): 1207 - 1223.
  • 9Cand~s E. Compressive sampling [ C ]. Madrid, Spain:Pro- ceedings of the International Congress of Mathematicians, 2006,3 : 1433 - 1452.
  • 10Candies E, Romberg J, Terence Tao. Robust uncertainty prin- ciples: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Transactions on Informa- tion Theory ,2006,52 (2) : 1289 - 1306.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部