期刊文献+

基于音频特征的乐器分类研究 被引量:3

The study of musical instrument classification based on audio features
下载PDF
导出
摘要 针对现有乐器分类研究中存在的使用特征量过多、分类准确率有待提高等问题,提出了一种特征量少、准确度高的乐器分类方法。基于Relief算法的主成分特征提取方法,计算出各特征量的权重,设计3层的神经网络分类器。根据所提算法和分类器,使用8项音频特征与传统的24项MFCC特征,分别对中西方9种乐器进行了分类实验,并分别使用权重最高的4、5、6项特征进行分类实验。结果表明,所提出的音频特征相比于传统MFCC特征对乐器分类的平均准确率更高,达到94.84%,且特征量更少,说明基于Relief算法的主成分特征提取方法能有效减小低相关性特征对分类准确率的影响。 To solve the problems in musical instrument classification studies like using too many features,lowclassification accuracy,etc,we proposed a musical instrument classification method with less features and high accuracy.We calculate the weight of each characteristics using the principal component feature extraction method based on Relief algorithm,and design three-layer neural network classifier.According to the proposed algorithm and classifier,we conduct the classification experiment between eight features proposed in this paper and traditionally twenty-four MFCC features,which include nine musical instruments consist of Chinese and western musical instrument,and accomplish the classification experiment by using the fourth,fifth and sixth characteristics with highest weight respectively.Results show that features proposed in this paper is fewer than MFCC features,and can get higher average accuracy which reached 94.84%.We can draw a conclusion that the principal component feature extraction method based on Relief algorithm can reduce the influence of low correlation characteristics on classification accuracy effectively.
作者 胡耀文 龙华 孙俊 周涛 邵玉斌 HU Yao-wen;LONG Hua;SUN Jun;ZHOU Tao;SHAO Yu-bin(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;501 Unit,State Administration of Press,Publication,Radio,Film and Television of The Peoplels Repubilc of China,Anning 650300,China)
出处 《软件导刊》 2018年第6期17-21,共5页 Software Guide
基金 云南省科技惠民计划项目(2014RA051)
关键词 乐器分类 音频特征 MFCC RELIEF算法 特征提取 musical instrument classification audio feature MFCC Relief algorithm feature extraction
  • 相关文献

参考文献6

二级参考文献80

  • 1李超,熊璋,朱成军.基于距离相关图的音频相似性度量方法[J].北京航空航天大学学报,2006,32(2):224-227. 被引量:6
  • 2T Joachims.Making large-scale SVM learning practical[C].In:B Scholkopf,C Burges,A Smola eds.Advances in Kernel Methods-Support Vector Learning,MIT Press,1999
  • 3Brown J C.Computer identification of musical instruments using pattern recognition with cepstral coefficients as features[J].Journal of the Acoustical Society of America,1999; 105 (3)
  • 4Minh N Do.Digital Signal Processing Mini-Project.http://lcavwww.epfl.ch/~minhdo/asr_project/asr_proj ect.html
  • 5张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6HANJIAWEI,MICHELINEK.Dataminingconceptsandtech-niques[M].2版.北京:机械工业出版社,2007.
  • 7HUA JIANPING, TEMBE W D, DOUGHERTY E R. Performance of feature selection methods in the classification of high-dimension data[ J]. Pattern Recognition, 2009, 42(3) : 409 - 424.
  • 8GUNAL S, GEREK O N, ECE D G, et al. The search for optimal feature set in power quality event classification[ J]. Expert Systems with Applications, 2009, 36(7) : 10266 - 10273.
  • 9YI LIU, ZHENG YUAN. FS_SFS: A novel feature selection method for support vector machines[ J] 1333 - 1345. Pattern Recognition, 2006, 39 (7).
  • 10KIRA K, RENDELL L. The feature selection problem: Traditional methods and a new algorithm[ C]//Proceedings of the Ninth Nation- al Conference on Artificial Intelligence. New Orleans: AAAI Press, 1992:129 - 134.

共引文献65

同被引文献32

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部