期刊文献+

基于优化小波阈值函数的高压电缆局放信号消噪研究

Research on Denoising of High Voltage Cable Partial Discharge Signals Based on Optimized Wavelet Threshold Function
下载PDF
导出
摘要 为了得到高压电缆准确可靠的局放信号,需要从监测到的信号中滤除白噪声、混杂的随机噪声等,为此设计了基于优化小波阈值函数的局放信号消噪法。该算法在小波变换阈值去噪的基础上进行优化,优化后的阈值和阈值函数在不同的分解层数下,具有较好的自适应能力,经计算机仿真、实验室模拟、现场测试实验证明,该优化后的阈值函数消噪法具有有效性与可行性,该方法不仅能准确地识别局放信号,而且能有效提高高压电缆在线绝缘监测的准确性。 In order to obtain accurate and reliable partial discharge signal of high voltage cable,it is necessary to filter out white noise and mixed random noise from the monitored signals.Therefore,this paper designs the denoising method based on the optimized wavelet threshold function.The algorithm is optimized on the basis of wavelet transform threshold denoising.The optimized threshold and threshold function have good adaptability under different decomposition layers.The algorithm is proved to be effective by computer simulation,laboratory simulation and field test.The experimental results show the effectiveness and feasibility of the optimized threshold function denoising.Based on the optimized wavelet threshold function,the pratial discharge signal denoising method can not only accurately identify the pratial discharge signal,but also effectively improve the accuracy of high-voltage cable on-line insulation monitoring.
作者 王志立 李志学 夏传鲲 WANG Zhi-li;LI Zhi-xue;XIA Chuan-kun(Hebi Power Supply Company,State Grid Henan Electric Power Company,Hebi 458030,China)
出处 《软件导刊》 2018年第6期163-166,共4页 Software Guide
基金 国网河南省电力公司项目(52172015001W)
关键词 高压电缆 绝缘监测 局部放电 小波阈值函数 high voltage cable insulation monitoring partial discharge wavelet threshold function
  • 相关文献

参考文献6

二级参考文献59

  • 1王可,余隋怀,乐万德,陆长德.面向计算机辅助工业设计的色彩设计系统[J].计算机辅助设计与图形学学报,2004,16(10):1425-1429. 被引量:21
  • 2周倩,唐炬,唐铭,谢颜斌,刘明军.GIS内4种典型缺陷的局部放电超高频数学模型构建[J].中国电机工程学报,2006,26(8):99-105. 被引量:52
  • 3钱勇,黄成军,陈陈,江秀臣.多小波消噪算法在局部放电检测中的应用[J].中国电机工程学报,2007,27(6):89-95. 被引量:67
  • 4刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程,2007,34(6):77-81. 被引量:45
  • 5Witkim A P. Scale-space filtering[C]//Proceeding ot- the Eighth International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers lnc, 1983 : 1019 - 1022.
  • 6Xu Y S. Wavelet transform domain filters: a spatially selective noise filtration technique[J ]. IEEE frans Image Processing, 1994,3(6) :747 - 758.
  • 7Zhang L, Bao P. Denoising by spatial correlation thresholding [J]. Circuits and Systems for Video Technology, 2003,13 (6) :535-538.
  • 8Ju G Z, Zhao Y Q. Correlation dcgree and correlation coefficient of multi-output functions [ J ]. Institute of Information Enzyfineering, 2005,10( 1 ) : 195 - 198.
  • 9Xiao Q, Wang J H, Jiang Y, et al. An improved wavelet threshold denoising method and its application [ C ]//2008 Chinese Control and Decision Conference. Shenyang: Northeastern University Press, 2008 : 3465 - 3468.
  • 10Rehrnan S, Siddiqi A H. Waveletbased correlation coefficient of time series of saudi meteorological data[J]. Ckaos Solitons and Fractals, 2009,39(4) : 1764 - 1789.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部