摘要
随着云计算、互联网等技术的飞速发展,数据量呈现爆炸性增长趋势,半结构和非结构化数据增长迅速,传统的关系型数据库愈来愈不能满足人们的需求。NoSQL(非关系型数据库)的出现,对于解决庞大数据量和高并发等问题提供了非常有效的解决方案。MongoDB数据库作为NoSQL中的一员,以其独特的优势而受人青睐。在关系数据库中,查询作为数据库中最为频繁的操作,查询的效率一直是人们研究的重点。相对应的,在大数据背景下,在非关系数据库中实现数据的快速查询变得愈加重要。文中主要研究MongoDB数据库的分页查询技术,针对MongoDB系统中内置的skip_limit分页技术查询效率低的现象,从分析影响分页查询速度的关键因素入手,提出一种新的分页技术进行优化。实验结果表明,优化后的查询方法在实现分页显示的操作中速度有明显的提高。
With the rapid development of cloud computing,Internet and other technologies,the amounts of data have presented explosive growth trend.Semi-structured and unstructured data growrapidly,so the traditional relational database cannot meet the public needs.NoSQL( non relational database) provides an effective solution for the problems like huge amount of data and high concurrency.Mongo DB database,as a member of the No SQL,is favored by people with its unique advantages.The query as the most frequent operation in the relational database,its efficiency has been the focus of the research.Correspondingly,in the context of big data,in the non-relational database achieving data rapidly becomes more important. In this paper,we mainly studies the paging technology of Mongo DB database. Aiming at the lowquery efficiency of the skip_limit paging technology in Mongo DB system,we propose a newpaging technique to optimize by analysis of the key factors affecting the speed of paging technology.The experiments showthat the optimized method has a significant improvement in the speed of the paging operation.
作者
戴传飞
马明栋
DAI Chuan-fei;MA Ming-dong(School of Telecommunications & Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Geographical and Biological Information,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处
《计算机技术与发展》
2018年第6期97-101,共5页
Computer Technology and Development
基金
江苏省自然科学基金-青年基金项目(BK20140868)