期刊文献+

静息态功能脑网络核心节点评价方法及其在抑郁症分类上的应用 被引量:2

Evaluation Method of the Hub on Resting State Functional Brain Network and Its Application in Major Depressive Disorder Classification
下载PDF
导出
摘要 识别大脑功能网络的核心节点对于脑科学与脑疾病研究有重要的指导意义。目前,研究者普遍运用度中心性和k-core分解法来度量网络的核心节点,然而度中心性只考虑节点自身的邻居个数而忽略了其在网络中的位置。k-core分解法只考虑节点在网络中的位置而忽略了其自身的特性。本文综合考虑节点的度值及其在网络中的位置,提出了一种基于度值和节点位置相结合的核心节点评价方法。对正常被试大脑功能网络进行蓄意攻击仿真实验表明:与度中心性和kcore分解法相比,对采用新方法识别出的核心节点进行蓄意攻击后,网络的全局效率下降幅度最大;其次,依据文中提出的中心性指标,找到抑郁症患者和正常被试之间具有显著差异的脑区,并将这些脑区的中心性指标作为分类特征进行分类,使得分类的准确率提高了7%. Identifying the hub of the brain function network has important guiding significance for the research of brain science and brain diseases.At present,degree centrality and k-core decomposition method are used to measure the hub of the network.However,degree centrality can only take into account the number of neighbors of the node,regardless of its location in the network,while k-core decomposition only measures the position of the nodes in the network and neglects its characteristic.In this paper,we proposed a method of evaluating the hub based on the degree value and node location by combining the degree of node and its position in the network.Through malicious attacking the hub nodes of brain network,the results show that the network is most seriously damaged when compared with degree centrality and k-core decomposition method.Then,the hub was used as classification feature to identify major depressive disorder patients from normal controls.The classification accuracy was improved by 7% .
作者 崔晓红 肖继海 郭浩 兰方鹏 陈俊杰 CUI Xiaohong1, XIAO Jihai2, GUO Hao1, LAN Fangpeng1, CHEN Junjie2(1. College of Information and Computer Science, 2. Center of Information Management and Development, Taiyuan University of Technology, Taiyuan 030024, Chin)
出处 《太原理工大学学报》 CAS 北大核心 2018年第3期440-444,共5页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61672374) 山西省基础研究项目(2015021106)
关键词 核心节点 度中心性 k-core分解 大脑功能网络 分类 hub node degree centrality k core decomposition brain functional network classification
  • 相关文献

参考文献1

二级参考文献2

共引文献108

同被引文献25

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部