期刊文献+

一种基于随机场的遥感影像信息测度方法

An Information Measurement for Remotely Sensed Imagery Based on Random Field
下载PDF
导出
摘要 针对运用信息熵测度度量遥感影像信息量存在的信息冗余问题,基于马尔科夫随机场模型研究了一种顾及空间相关的遥感影像信息测度方法。该方法对传统马尔科夫随机场进行简化,将这种简化的马尔科夫随机场模型应用于影像信息熵的计算。对该方法的计算公式进行了推导,证明了其可以减弱空间相关给影像信息熵测度造成的信息冗余,并且不需要进行高维计算。实验验证了这种空间熵对影像信息度量的有效性。 In this paper,an information measurement has been researched based Markov random field. This measurement can reduce the information redundancy caused by spatial correlation. In this method, a simple Markov random field is used to compute information entropy of remotely sensed imagery. Theoretically,the compute equations have been derived,and the highdimension computation is not needed. Experimental results prove the effectiveness of the proposed method.
作者 刘凤珠 杨伯钢 张飞舟 杨应 LIU Fengzhu;YANG Bogang;ZHANG Feizhou;YANG Ying(School of Earth and Space Sciences,Peking University,Beijing 100871,China;Beijing Institute of Surveying and Mapping,Beijing 100038,China;Beijing Key Laboratory of Urban Spatial Information Engineering,Beijing 100038,China;National Geomatics Center of China,Beijing 100830 China)
出处 《遥感信息》 CSCD 北大核心 2018年第2期9-16,共8页 Remote Sensing Information
基金 城市空间信息工程北京市重点实验室经费资助项目(2017207) 测绘地理信息公益性行业科研专项项目(201512010)
关键词 遥感影像 信息量 信息熵 马尔科夫随机场 空间相关 remotely sensed imagery information entropy Markov random field spatial correlation
  • 相关文献

参考文献5

二级参考文献44

  • 1林宗坚,张永红.遥感与地理信息系统数据的信息量及不确定性[J].武汉大学学报(信息科学版),2006,31(7):569-572. 被引量:27
  • 2[1]Cobb M,Chung M,Foley H. A rule-based approach for the conflation of attributed vector data [ J ].Geoinformatica, 1998, ( 1 ): 7-35.
  • 3[2]Cobb M. Intelligent database agents for geospatial knowledge integration and management [ DB/OL ].http://sdiagent. st. usm. edu/default. asp, 2000.
  • 4[3]Cowen D J, Shirley L, Jensen J. The update and maintenance of TIGER files from other data sources[DB/OL]. http://www. geog. buffalo. edu/ucgis/nrespri/socar-a. html, 1996.
  • 5[4]Dallal S L. Automated attribution of shapefile data through map merging [ DB/OL ]. http://www. esea. eom/software/p306.html, 1998.
  • 6[5]ESEA Inc. Conflation FAQ[DB/OL]. http://www.conflation. com/conflati. htm.
  • 7[6]Filin S, Doytsher Y. A linear mapping approach to map conflation: matching of polylines [ J ]. Surveying and Land Information Systems. 1999,59(2) : 107-114.
  • 8[7]Filin S, Doytsher Y. A liner conflation approach for the integration of photogrammetric information and GIS data[A]. In: ISPRS[ C], 2000, Vol. 33, Amsterdam: ( http://www. geo. tudelft. nl/frs/staff/sagi/pub/ISPRS2000-filin-doytsher-paper-528. pdf).
  • 9[8]GIS/Trans Ltd. Comprehensive GIS conflation[ M]. GIS/Trans Ltd. White Paper, 1995.
  • 10[9]Goodchild M F. Conflation: combining geographical information[ DB/OL]. http://www. ncgia. ucsb. edu/research/ucgis/proposal. html, 1996.

共引文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部