期刊文献+

约束品性与非光滑多目标优化问题

Constraint qualification and nonsmooth multiobjective optimization probems
下载PDF
导出
摘要 考虑带不等式和集约束的非光滑多目标优化问题。首先利用Clarke方向导数、切锥、可达方向锥和线性化锥等工具引入广义Abadie约束品性和广义Kuhn-Tucker约束品性。进一步,分别在广义Abadie约束品性成立和广义Kuhn-Tucker约束品性成立这两种情况下,证明了Geoffrion真有效解是广义Kuhn-Tucker真有效解。 We considered a nonsmooth multiobjective optimization problem with inequality constraints and set constraint. We first introduced the generalized Abadie constraint qualification and generalized Kuhn-Tucker constraint qualification in terms of Clarke directional derivative,tangent cone,the cone of attainable directions and linearized cone. Furthermore,we proved that Geoffrion proper efficient is generalized Kuhn-Tucker properly efficient under generalized Abadie constraint qualification holds or generalized Kuhn-Tucker constraint qualification holds.
作者 万轩 陈华峰 瞿先平 沈玉玲 WAN Xuan;CHEN Huafeng;QU Xianping;SHEN Yuling(Department of Foundation,Chongqing Teleconmmnication Polytechnic College,Chongqing 402247,China)
出处 《贵州师范大学学报(自然科学版)》 CAS 2018年第3期61-64,共4页 Journal of Guizhou Normal University:Natural Sciences
基金 重庆市教委科学技术研究项目(NO.KJ1605201)
关键词 非光滑多目标优化 广义Abadie约束品性 广义Kuhn-Tucker约束品性 Geoffrion真有效解 广义Kuhn-Tucker真有效解 nonsmooth multiobjective optimizations generalized Abadie constraint qualification Gen-eralized Kuhn-Tucker constraint qualification Geoffrion proper efficient generalized Kuhn-Tucker
  • 相关文献

参考文献1

二级参考文献9

  • 1Ehrgott M. Multicriteria optimization [M]. 2nd Edition. Berlin: Springer, 2005.
  • 2Geoffrion A M. Proper eficiency and the theory of vectormaximization[J]. J Matb Anal Appl, 1968,22 : 618-630.
  • 3Li X F. Constraint qualifications in nonsmooth multiobiec rive optimization[J]. J Optim Theory Appl, 2000,106 (2):373-398.
  • 4Giorgi G, Jimenez B, Novo V. On constraint qualifications in directionally differentiable multiobjective optimization problems[J]. RAIRO Oper Res, 2004,38 : 255-274.
  • 5Golestani M,Nobakhtian S. Nonsmooth multiobjective pro- gramming and constraint qualifications[J]. Optimization, 2013,62(6) :783-795.
  • 6Peng Z Y,Xu S,Long X J. Optimality conditions for weak φ-sharp minima in vector optimization problems[J]. Posi- tivity, 2013,17(3) :475-482.
  • 7Clarke F H. Optimization and nonsmooth analysis [M]. New York:Wiley, 1983.
  • 8Avriel M, Diewert W E, Schaible S. Generalized concavity [M]. New York:Plenum Press, 1988.
  • 9彭再云,雷鸣,刘亚威,谭远顺.一类可微凸多目标分式规划的最优性条件[J].重庆交通大学学报(自然科学版),2009,28(1):156-157. 被引量:4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部