期刊文献+

基于OE概念格的理想因子分解 被引量:1

The optimal factorization based on object-induced three-way concept lattices
下载PDF
导出
摘要 文中主要研究如何用OE概念格作为因子分析中的理想因子,从而产生形式背景上基于OE概念格的理想因子分解,获得理想因子概念。定义了基于OE概念格的因子分解,基于OE概念格的理想因子分解以及(理想)因子,讨论了因子的存在性、最优性,并对强制性因子进行了研究。通过因子分解可以减少OE概念的个数,便于进行数据分析研究。 This paper mainly discusses the approach to obtain optimal factor concepts of object-induced three- way concept lattices for a formal context. The main idea is to take object-induced three-way concepts as the optimal factors in factor analysis, produce the optimal factorization and obtain the optimal factor concepts. The detailed procedure is as follows. The notions of factorization and optimal factorization are firstly defined on the basis of object-induced thine-way concept lattices as well as the optimal factors, and then, the universality and optimality of factors are discussed. Finally, the properties of mandatory factors are researched. Factorization can reduce the number of object-induced three-way concepts and make data analysis and research easier.
作者 郭奇瑞 魏玲 GUO Qirui, WEI Ling(School of Mathematics, Northwest University, Xi'an 710127, Chin)
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期323-329,共7页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(61772021 11371014)
关键词 形式背景 OE概念格 因子分解 理想因子 强制性因子 formal context object-induced three-way concept lattices factorization optimal factors manda- tory factors
  • 相关文献

参考文献4

二级参考文献67

  • 1ZHANG Wenxiu,WEI Ling,QI Jianjun.Attribute reduction theory and approach to concept lattice[J].Science in China(Series F),2005,48(6):713-726. 被引量:73
  • 2齐红,刘大有,胡成全,卢明,赵亮.基于搜索空间划分的概念生成算法[J].软件学报,2005,16(12):2029-2035. 被引量:15
  • 3Oosthuizen G D. The Application of Concept Lattice to Machine Learning. Technical Report, University of Pretoria, South Africa, 1996.
  • 4Ho T B. Incremental conceptual clustering in the framework of Galois lattice. In: Lu H, Motoda H, Liu H, eds. KDD: Techniques and Applications. Singapore: World Scientific, 1997. 49~64.
  • 5Kent R E. Bowman C M. Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas, 1995.
  • 6Corbett D, Burrow A L. Knowledge reuse in SEED exploiting conceptual graphs. In: International Conference on Conceptual Graphs (ICCS'96). Sydney, 1996. University of New South Wales, 1996. 56~60.
  • 7Schmitt I, Saake G. Merging Inheritance hierarchies for scheme integration based on concept lattices [EB/OL]. http: //www.mathematic.tu-darm stadt.de/ags/ag1.
  • 8Siff M, Reps T. Identifying modules via concept analysis. In: Harrold M J, Visaggio G, eds. International conference on software maintenance. Bari, Italy. Washington, DC: IEEE Computer Society, 1997. 170~179.
  • 9Ho T B. An approach to concept formation based on formal concept analysis. IEICE Trans Information and Systems, 1995, E782D (5): 553~559.
  • 10Carpineto C, Romano G. Galois: an order-theoretic approach to conceptual clustering. In: Utgoff P, ed. Proceedings of ICML 293. Amherst: Elsevier, 1993. 33~40.

共引文献247

同被引文献22

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部