期刊文献+

一种自适应阻尼因子的仿射传播聚类算法 被引量:3

Affinity propagation clustering algorithm with adaptive damping factor
下载PDF
导出
摘要 仿射传播聚类算法已经被广泛应用于各个领域,其源码被Toronto大学公开在网络中。针对公开源码中如何选择阻尼因子的值以平衡算法震荡与收敛速度的问题,提出一种自适应阻尼因子的仿射传播聚类算法。所提算法通过监视算法的震荡情况,自适应调整阻尼因子的值,相比公开源码中的固定阻尼策略,不仅可以有效避免震荡,且可以很大程度地保持阻尼因子较小时的收敛速度。通过多个UCI公开数据集试验证明了所提算法的有效性。 Affinity propagation clustering algorithm has been extensively applied in various fields. Its source code is opened on the network by Toronto University. Aiming at how to choose the damping factor value of open source to balance the convergence speed and oscillation problems of the algorithm, an affinity propagation clustering algorithm with adaptive damping factor is proposed. The proposed algorithm adaptive factor adjusts the damping factor value by monitoring oscillation situation of the algorithm. It can not only effectively avoid the oscillation, but also greatly keep the convergence speed with the small damping factor compared with the fixed damping factor strategy in open source. Experiments using multiple UCI public data show the validity of the proposed algorithm.
作者 胡久松 刘宏立 颜志 徐琨 HU Jiusong, LIU Hongli, YAN Zhi, XU Kun(College of Electrical and Information Engineering, Hunan University, Changsha 410082, Chin)
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期363-368,共6页 Journal of Northwest University(Natural Science Edition)
基金 中央国有资本经营预算基金资助项目(财企[2013]470号) 国家自然科学基金资助项目(61771191) 中央高校基本科研基金资助项目(1053214004) 湖南省自然科学基金资助项目(2017JJ2052)
关键词 仿射传播聚类算法 自适应阻尼因子 震荡因子 APC adaptive damping factor oscillation factor
  • 相关文献

参考文献7

二级参考文献40

  • 1倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 2Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 3Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.
  • 4Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141.
  • 5Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428.
  • 6Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371.
  • 7Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715.
  • 8Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415.
  • 9Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022.
  • 10Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.

共引文献292

同被引文献10

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部