期刊文献+

基于MSER特征的无人机倾斜影像匹配算法 被引量:4

UAV image matching algorithm based on MSER
下载PDF
导出
摘要 针对无人机影像存在仿射变形与阴影问题,文中提出应用MSER和影像最大信息熵,提取仿射不变特征,通过POS数据估计影像变换初始参数,利用初始变换参数估计待匹配点的位置,提取匹配点局部区域的点集,利用NCC相关系数确定局部区域内点的同名点,对于初始匹配点对采用均方根误差(RMSE)剔除初始中误匹配点对。实验结果表明,该算法在存在仿射变形、高大建筑物阴影的影像匹配表现较好的结果。 In order to solve the problem of affine transformation and shadowing in UAV images,in the paper,the affine invariant features was extracted based on the MSER and the maximum information entropy of the image. Initial parameters of the image transformation were estimated using POS data,the position of the point to be matched was estimated using the initial transformation parameters to extract the matching point locations. The same point in the interior of the point set was determined by using the NCC correlation coefficient,and the root mean square error( RMSE) was used to eliminate the initial mismatched point pairs in the initial matching point set. Experimental results showed that the proposed algorithm performs were well in image matching with affine deformation and shadowing of tall buildings.
作者 韩宇 Hang Yu(Gansu Emergency Surveying and Mapping Engineering Research Center,Lanzhou 730000,China)
出处 《矿山测量》 2018年第2期37-40,46,共5页 Mine Surveying
关键词 MSER 倾斜摄影 NCC 影像匹配 无人机 MSER tilt photography NCC image matching UAV
  • 相关文献

参考文献10

二级参考文献107

  • 1LI Chang-chun1, ZHANG Guang-sheng1, LEI Tian-jie2, 3, GONG A-du2, 3 1. School of Surveying & Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China,2. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China,3. Ministry of Civil Affairs/Ministry of Education of China Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China.Quick image-processing method of UAV without control points data in earthquake disaster area[J].中国有色金属学会会刊:英文版,2011,21(S3):523-528. 被引量:14
  • 2韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 3梁栋,童强,屈磊,王年,韦穗.一种基于极几何和单应约束的图像匹配算法[J].系统仿真学报,2006,18(1):44-46. 被引量:21
  • 4华顺刚,曾令宜.一种基于角点检测的图像密集匹配算法[J].计算机工程与设计,2007,28(5):1092-1095. 被引量:11
  • 5Ali S, Reilly V, Shah M. Motion and appearance contexts for tracking and reacquiring targets in aerial videos [ A]. In Proceedings of the IEEE Conference on Computer Vision and Patter Recognition [ C ]. Minneapolis, MN, USA, IEEE Computer Society: 2007.1 - 6.
  • 6Unmanned Aircraft Systems Roadmap 2005-2030 [ R]. Office of the Secretary of Defense, Washington. DC, USA, 2005.71 - 77.
  • 7Tomasi C, Kanade T. Detection and tracking of point features [R]. Carnegie Mellon University, Technical Report, 1991.1 - 20.
  • 8Lindeberg T. Feature detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998,30(2 ) : 77 - 116.
  • 9Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60 (2) :91- 110.
  • 10Matas J, Chum O, Urban M, and Pajdla T. Robust wide baseline stereo from maximally stable extreme regions [ A]. In Proceedings of British Machine Vision Conference [ C ]. Cardiff, UK, 2OY2. 384 - 393.

共引文献327

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部