摘要
通过腐蚀检测系统对某公司常压蒸馏装置低温部位腐蚀情况进行了检测。将一段时间内检测到的塔顶污水的pH值、Cl-~浓度、Fe^(2+)浓度和硫化物含量作为输入数据,腐蚀速率作为输出数据,通过BP神经网络建立了腐蚀速率预测模型。预测数据与实际数据对比结果表明,预测误差较大。运用遗传算法对BP神经网络进行优化,优化后的模型能够较准确预测常压蒸馏装置低温部位腐蚀情况。
Corrosion situation for the low-temperature part of atmospheric distillation unit was tested by corrosion detection system,and then p H value,Cl-concentration,Fe2+ concentration and sulfide content were used as input data,while corrosion rate was taken as output data. Predictive model for corrosion rate was established through BP neural network based on the detected data from overhead sewage,although error of the prediction results was large. BP neural network was optimized by genetic algorithm which could accurately predict corrosion situation in low-temperature part of the unit.
作者
李昊
杨国明
辛靖
张鑫
王宁
LI Hao;YANG Guoming;XIN Jing;ZHANG Xin;WANG Ning(CNOOC Research Institute of Refining and Petrochemicals,Beijing 102200,China)
出处
《石油化工腐蚀与防护》
CAS
2018年第2期34-37,共4页
Corrosion & Protection In Petrochemical Industry
基金
中海油炼油化工科学研究院科研项目"中沥公司常减压装置低温腐蚀及常压塔压降高解决方案"(E-12178D07)
关键词
常压塔顶腐蚀
BP神经网络
遗传算法
腐蚀速率
预测
corrosion of atmospheric tower overhead
BP neural network
genetic algorithm
corrosion rate
prediction