期刊文献+

Exponentiated Weibull大气湍流下混合RF/FSO系统容量分析 被引量:3

Channel capacity analysis for hybrid RF/FSO system under exponentiated Weibull atmosphere turbulence
下载PDF
导出
摘要 RF/FSO混合通信系统弥补了自由空间光通信受天气影响严重的问题,提高了系统的可用性。本文研究了Exponentiated Weibull大气湍流下双门限混合RF/FSO系统平均信道容量,考虑大气湍流和指向误差对平均信道容量的联合影响,利用Meijier G函数推导出平均信道容量的闭合表达式。根据平均信道容量闭合表达式进行了仿真,分析了在不同距离、大气湍流强度、抖动标准差和波束宽度条件下,平均信道容量随信噪比变化的关系。 Hybrid RF/FSO system solves the problem of the effects of severe weather on FSO,and improves system availability. Considering the combined effects of the atmosphere turbulence and pointing errors on the average channel capacity,the average channel capacity of the hybrid RF/FSO system is investigated under exponentiated Weibull atmosphere turbulence. The closed-form expressions for average channel capacity are derived based on a Meijer's G function. The relationship between the average channel capacity and the SNR under different parameters such as the atmosphere turbulence,the normalized jitter standard deviation and the normalized beam-width is analyzed by simulation.
作者 张韵 王翔 赵尚弘 蒙文 赵静 ZHANG Yun;WANG Xiang;ZHAO Shang-hong;MENG Wen;ZHAO Jing(hfformation and Navigation college,Air Force Engineering University,Xi'an 710077,China)
出处 《激光与红外》 CAS CSCD 北大核心 2018年第6期686-690,共5页 Laser & Infrared
关键词 RF/FSO 平均信道容量 Exponentiated WEIBULL分布 指向误差 RF/FSO average channel capacity exponentiated Weibull distribution pointing error
  • 相关文献

参考文献2

二级参考文献42

  • 1Spangelo S, Cutler J, Klesh A, et al. Mndels and tools to evaluate space communication network capacity[J]. IEEE Transactions on Aerospace and Electronic' Systems, 2012, 48(3)i 2387-2404.
  • 2Reinhart R, Kacpura T, Johnson S, et al. NASA's space communications and navigation test bed aboard the international space station[J]. IEEE Aernspaee and Elet'lronic Systems Magazine, 2013, 28(4): 4-15.
  • 3Li H, Luo H, Yu F, et al. Reliable transmission of consultative committee for space data systems file delive7 protocol in deep space cummunieation[J]. [EEE Journal of Systems Engineering and Electronics, 2010, 21(3): 349-354.
  • 4The Space Communications Architecture Working Group (SCAWG). NASA space enmmunieations and navigation architecture recommendations for 2005- 2030[R]. SCAWG, 2006.
  • 5Ghazisaidi N, Maier M, Assi C M. Fiber-wireless (FiWi) aecess nelworks: A survey[J]. IEEE Communications Magazine, 2009, 47(2): 160-167.
  • 6Willebrand H, Chuman B S. Fiber optics without fiber[J]. IEEE Spectrum, 2001, 38(8): 40-45.
  • 7Mukherjee J, Ramamullhy B. Communication technologies and architectures fur space network and interplanetary interact[J]. IEEE Communications Surveys & Tutorials, 2013, 15(2): 881-897.
  • 8Akyihliz I F. Akan O B, Chen C, el al. InterPlaNetary Internel: State-of-the-art and research challenges[J]. Computer Networks. 2003 43(2): 75-112.
  • 9Burleigh S, Hooke A, Torgerson L, et al. Delay-Tolerant networking: An approaeh to interplanetary Internet[J]. IEEE Communications Magazine, 2003, 41 (6): 128-136.
  • 10Rash J, llogie K, Casasanta R. lnternet technology tor future space missions[J]. Computer Networks, 2005, 47(5): 651-659.

共引文献29

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部