期刊文献+

基于立体视觉与纹理特征相结合的障碍物探测 被引量:1

Obstacle Detection Based on Combined Stereo Vision and Texture Feature
下载PDF
导出
摘要 针对智能汽车行驶过程中障碍物检测问题,提出一种使用双目立体视觉的距离信息与障碍物纹理信息相结合的障碍物检测方法。首先,将双目相机的左图和右图校正后进行匹配得到视差图,根据相机内部参数和外部参数将视差图投影为具有距离信息的鸟瞰图,去除地面及高空背景目标,在鸟瞰图上将相近的点云聚类为一个目标,得到障碍物的粗略位置信息;然后,将得到的位置信息映射到原图,并形成多个候选区域,在候选区域查找障碍物边缘信息,得到障碍物具体位置。该算法结合了物体距离的三维信息和物体形状的二维信息,使障碍物的分割结果更加精准。针对典型交通场景进行了实验,结果表明,该算法能够有效弥补单独使用距离信息或者纹理信息带来的障碍物分割不准确的问题。 To aim at detecting obstacles in the process of intelligent vehicle driving,a method based on the distance information and the obstacle texture information is proposed.First,the left camera and right camera are corrected to obtain a parallaximage,and the parallaximage is projected into a bird's-eye view with distance information according to the camera's internal and external parameters.In the bird's eye view,the target information is mapped to the original image so that a plurality of candidate regions are formed,and the edge information of the obstacle is searched in the candidate region to obtain the specific position of the obstacle.The algorithm proposed in this paper combines the three-dimensional information of the object distance and the two-dimensional information of the object shape,therefore the segmentation result of the obstacle is more accurate.The experiment is carried out for the typical traffic scene.The result shows that the algorithm can effectively improve the segmentation inaccuracy caused by the application of distance information or texture information.
作者 赵申 ZHAO Shen(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《软件导刊》 2018年第5期117-120,共4页 Software Guide
关键词 图像处理 目标检测 立体视觉 边缘检测 image processing obstacles detection stereo vision edgedetection
  • 相关文献

参考文献6

二级参考文献86

  • 1侯德藻,李克强,连小珉,刘锋.新型车载探测雷达系统技术研究[J].中国机械工程,2004,15(21):1891-1894. 被引量:6
  • 2郭琦,洪炳熔.基于人工神经网络实现智能机器人的避障轨迹控制[J].机器人,2002,24(6):508-512. 被引量:17
  • 3项志宇.针对越野自主导航的障碍物检测系统[J].东南大学学报(自然科学版),2005,35(A02):71-74. 被引量:14
  • 4杨文杰,胡明昊,杨静宇.一种基于光流的障碍物估计算法[J].计算机工程与应用,2006,42(5):80-81. 被引量:9
  • 5Gavrila D M, Giebel J, Munder S. Vision-based pedestrian detection: the protector system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 13-18
  • 6Tons M, Doerfler R, Meinecke M M, Obojski M A. Radar sensors arid sensor platform used for pedestrian protection in the EC-funded project SAVE-U. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 813-818
  • 7Broggi A, Bertozzi M, Fascioli A, Sechi M. Shape-based pedestrian detection. In: Proceedings of IEEE Intelligent Vehicles Symposium. Dearborn, USA. IEEE, 2000. 215-220
  • 8Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems: single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 1-6
  • 9Xu Feng-Liang, Liu Xia, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63-71
  • 10Zhao Liang, Thorpe C. Stereo and neural network-based pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3): 148-154

共引文献184

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部