期刊文献+

一种模糊认知的协同过滤算法

A collaborative filtering algorithm based on fuzzy cognition
下载PDF
导出
摘要 协同过滤是目前电子商务推荐系统中应用最成功的个性化推荐技术之一,但传统的协同过滤算法认为各个时期的评分数据信息是静态的。针对该问题,提出两种模糊认知:评分的模糊递增和评分权重的模糊递增。首先,对项目的评分信息划分时间窗口,且利用链式结构计算项目的相似性,选择目标项目的最近邻居;其次,对评分数据赋予时间权重,提出一种权重函数,并对传统的预测方法进行改进。同时,在预测阶段提出一种分层式的优化策略对评分的时间权重进行求解,完成推荐。最后,在Netflix的数据集实验结果表明,该算法较传统的协同过滤算法有显著的提高,推荐准确率提升了9.8%~14.1%。 Collaborative filtering is one of the most successful personalized recommendation techniques currently used in E-commerce recommendation systems. However, traditional collaborative filtering algorithms assume the ratings to be static in each period. To solve this problem, two kinds of fuzzy cognition are proposed: fuzzy increasing of ratings and fuzzy increasing of time weights. Firstly, item ratings are divided into time windows, the similarity between items is calculated using a chain structure, and the nearest neighbors of the target item is selected. Secondly, time weights are assigned to ratings, a weight function is proposed, and the traditional prediction method is improved. At the same time, a hierarchical optimization strategy is proposed in the prediction phase to solve the time weights of rat ings, thus completing the recommendation. Finally, experiments on the Netflix datasets show that, compared with the traditional collaborative filtering algorithms, our proposal improves the recommenda tion accuracy by 9.8%-14.l%.
作者 刘井平 李平 LIU Jing ping;LI Ping(School of Computer & Communication Engineering,Changsha University of Science & Technology,Changsha 410114,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第5期898-905,共8页 Computer Engineering & Science
基金 湖南省教育厅重点项目(14A004) 长沙理工大学研究生科研项目(CX2015SS16)
关键词 协同过滤 模糊认知 相似性度量 评分预测 collaborative filtering fuzzy cognition similarity measurement rating prediction
  • 相关文献

参考文献5

二级参考文献55

  • 1J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166
  • 2Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196
  • 3J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87
  • 4高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003
  • 5Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80
  • 6G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749
  • 7Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129
  • 8G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254
  • 9Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities[C].In:Proc of ACM SIGKDD Int'l Conf.New York:ACM Press,2000.437-446
  • 10KDD2000 Dataset[OL].http://www.ecn.purdue.edu/KDDCUP/data/,2005

共引文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部