期刊文献+

多路径高斯核模糊C均值聚类算法 被引量:4

A multi-path Gaussian kernel fuzzy C means clustering algorithm
下载PDF
导出
摘要 聚类算法单一迭代路径限制了参数优值的搜索。提出一种多路径高斯核模糊C均值聚类算法(MGKFCMs),MGKFCMs算法首先取核目标函数及模糊隶属度函数中的核函数为高斯核函数;然后利用梯度法得到聚类中心迭代公式,并基于该迭代公式和粒子群算法作聚类中心的并行参数迭代,在每一次聚类迭代时,选择聚类目标函数值小的路径作为参数迭代最终路径。对比分析了MGKFCMs算法的相关性质,通过仿真实验验证了所提算法的有效性。 The single iteration path of the clustering algorithm limits the search path of the parame ter's optimal value. In this paper, a multi path Gaussian kernel fuzzy c means clustering method is pro posed and named MGKFCMs. Firstly, MGKFCMs takes the nuclear objective function and the fuzzy membership degree function in the kernel function as the Gaussian kernel function. Secondly, the gradient method is used to get the iterative formula of the clustering center. Based on this iterative formula particle swarm tively in parallel. I selected as the fina the convergence fective. algorithm, the parameters of the clustering center are calculated iteran every iteration of clustering, a path with 1 path of parameter iteration. The correlatio the algorithm is studied. Simulation result small clus n property of MGKFCMs s show that the proposed function value is is analyzed, and algorithm is effective.
作者 文传军 汪庆淼 WEN Chuan-jun;WANG Qing-miao(School Mathematical Sciences and Chemical Engineering,Changzhou Institute of Technology,Changzhou 213002;School of Computer Science and Technology,Soochow University,Suzhou 215021,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第5期931-937,共7页 Computer Engineering & Science
基金 国家自然科学基金(61170126) 常州工学院校级课题(YN1305)
关键词 核方法 模糊聚类 高斯核 聚类中心 多路径迭代 kernel method fuzzy clustering Gauss kernel clustering center multi route iteration
  • 相关文献

参考文献3

二级参考文献20

  • 1徐向华,朱杰,郭强.语音识别中基于模糊聚类分析的参数聚类[J].上海交通大学学报,2004,38(12):2086-2088. 被引量:3
  • 2张道强,陈松灿.在核诱导的鲁棒度量下的模糊C-均值与可能性C-均值算法[J].模式识别与人工智能,2004,17(4):390-395. 被引量:3
  • 3Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 4Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 5Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 6Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 7Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 8Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 9Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 10Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.

共引文献248

同被引文献51

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部