期刊文献+

基于结构化判别稀疏表示的目标跟踪 被引量:3

Structured discriminant sparse representation based object tracking
下载PDF
导出
摘要 针对稀疏表示目标跟踪算法采用整体模板且区分目标与背景的能力差的缺点,该文提出了一种改进算法。采用尺度不变特征变换(SIFT)对目标进行特征提取。采用结构化稀疏表示的外观模型对候选目标进行稀疏表示,得到稀疏系数。通过正负样本设计并训练判别分类器,然后对候选目标进行分类,获得置信值。采用上一帧的跟踪结果对分类器与字典进行更新。对该文算法进行了仿真研究。计算仿真结果中3种测试序列的平均重叠率和平均中心点误差,Deer测试序列的值为0.633 8和9.397 6,Car11测试序列的值为0.677 5和1.943 3,Caviar2测试序列的值为0.753 5和3.838 2。 An improved algorithm is proposed aiming at such shortcomings of sparse representation based object tracking algorithm as using an overall template and the poor ability of distinguishing targets from a background. Scale-invariant feature transform(SIFT) is used to extract the features of a target. Candidate objects are sparsely represented using appearance models of structured sparse representation,and sparse coefficients are obtained. A discriminant classifier is designed and trained by positive and negative samples,candidate objects are classified,and a confidence value is obtained.The tracking result of the previous frame is used to update the classifier and the dictionary. The improved algorithm is simulated. The average overlap ratio and average center point error of 3 test sequences of the simulation results are calculated,and Deer test sequence's are 0.633 8 and 9.397 6,Car11 test sequence's are 0.677 5 and 1.943 3,Caviar2 test sequence's are 0.753 5 and 3.838 2.
作者 茅正冲 黄舒伟 Mao Zhengchong;Huang Shuwei(Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Jiangnan University,Wuxi 214122,China)
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期271-277,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60973095) 江苏省产学研联合创新资金(BY2015019-29)
关键词 结构化稀疏表示 目标跟踪 尺度不变特征变换 分类器 字典 structured sparse representation object tracking scale-invariant feature transform classifiers dictionaries
  • 相关文献

参考文献4

二级参考文献35

  • 1於跃成,刘彩生,生佳根.分布式约束一致高斯混合模型[J].南京理工大学学报,2013,37(6):799-806. 被引量:3
  • 2葛炜,曹东杰,郝宏旭.红外制导技术在精确打击武器中的应用[J].兵工学报,2010,31(S2):117-121. 被引量:20
  • 3刘明,赵孝磊.一种改进的Camshift目标跟踪算法[J].南京理工大学学报,2013,37(5):755-760. 被引量:9
  • 4Brown M, Lowe D G. Recognizing panoramas[C] ff Proceedings of the 9th International Conference onComputer Vision ( ICCV03). Nice, France.. IEEE, 2003 .. 1218 - 1225.
  • 5Lowe D G. Distinctive image features from scale- invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) : 91 - 110.
  • 6Jegou H, Harzallah H, Schmid C. A contextual dissimilarity measure for accurate and efficient image search[C] ffProceedings of the Conference on Computer Vision Pattern Recognition. Minneapolis, USA: Is. n.], 2007:1-8.
  • 7Zitova B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21: 977 - 100.
  • 8Lowe D G. Object recognition from local scale-invariant features [ C] // Proceedings of the International Conference on Computer Vision. Kerkyra, Greece: IEEE, 19991150 - 1157.
  • 9Mikolajczyk K, Schmid C. Scale A{fine invariant interest point detectors [J]. International Journal o{ Computer Vision, 2004, 1(60) :63 - 86.
  • 10Mikolajezyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10) .. 1615 - 1630.

共引文献88

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部