摘要
文章研究起落架系统发生故障的频率,变事后维修为预防维修,尽可能保证飞行安全。因此提出一种采用模糊信息粒化和支持向量机相融合的时序回归预测技术来预测起落架系统故障发生频率。以某型通航飞机2012年1月至2016年12月的起落架故障数据为基础,根据该模型输入数据并进行故障频率预测。预测结果表明,采用该方法预测起落架故障频率合理有效,根据该预测结果可得到起落架故障频率的变化趋势和变化空间,并为机务维修提供技术支持。
This paper research on the failure frequency prediction of the general avaiation aircraft's landing system. Change the break down maintenance to preventive maintenance. As far as possible to ensure flight satety. So,based on the information granulation and the Support Vector Machine's method,put forward a time series regression forecasting technology to predict the landing gear 's failure frequency. Based on the landing gear failure frequency data from Jan 2012 to Dec 2016,according to the model input data and forecast in real time. According the prediction results,showthat using the technology to predict the landing gear's failure frequency is reasonable and effective. According to the prediction results,come out the trends and space of the failure frequency of the landing gear,provide technical support to the aircraft maintenance.
作者
丰世林
张中波
杜仲
FENG Shi-lin;ZHANG Zhong-bo;DU Zhong(Aviation Engineer Institute,The Civil Aviation Flight University of China;Suining Subcollege,The Civil Aviation Flight University of China,Suining Sichuan 629000,China)
出处
《组合机床与自动化加工技术》
北大核心
2018年第6期51-55,共5页
Modular Machine Tool & Automatic Manufacturing Technique
基金
民航局科技创新引导资金项目(C2013064)
民航局民航教育人才类项目(J166)
2016年中央高校教育教学改革专项基金(E20160402)
四川省教育厅重点项目(16ZA0020)
中国民航飞行学院项目(J2015-21)
中国民航飞行学院创新团队计划项目(XM2732)
关键词
支持向量机
信息粒化
起落架系统
故障频率预测
the support vector machine
information granulation
the landing gear system
failure frequencyforecast