摘要
本文研究污染环境下受到毒素和双重噪声扰动的具有Markov切换的随机三种群Lotka-Volterra模型系统,利用随机微分方程相关理论及分析方法,得到该系统随机持久的充分条件,并通过数值模拟显示出相应的理论结果。
In this paper, a stochastic three-species Lotka-Volterra system with Markov switching under the influence of toxin and double noises in the polluted environment was investigated. By using the theory of stochastic differential equations, the sufficient conditions of stochastic permanence were obtained. In the end, the corresponding theoretical results were presented through numerical simulation.
作者
程铭
谢红梅
Cheng Ming;Xie Hongmei(College of Science,Shihezi University,XinJiang Shihezi,832003,China)
出处
《石河子大学学报(自然科学版)》
CAS
北大核心
2018年第2期226-233,共8页
Journal of Shihezi University(Natural Science)
基金
国家自然科学基金项目(11161040)
关键词
污染环境
MARKOV
随机扰动
三种群
持久性
polluted environment
Markov chain
stochastic three-species system
permanence