期刊文献+

行星齿轮系故障特征多目标进化选择方法

Multi-objective Evolutionary Selection Method for Planetary Gear Trains Fault Feature
下载PDF
导出
摘要 针对行星齿轮箱复杂故障难以辨识问题,提出一种基于遗传算法的行星齿轮系多目标故障特征优选方法。从振动信号中提取多域故障特征,建立了多域故障特征优选数学模型,将特征选择问题转化为多目标优化问题;采用遗传算法求解得到最优特征子集。实验表明,该方法对高维故障特征具有较好的降维性能,能有效选择高质量的故障特征子集,使得故障诊断性能明显提高。 Because it is hard to identify complex fault in planetary gearbox,this paper proposes a new method based on genetic algorithm which is used to extract the fault signals from vibration,establishes the mathematical optimization model for multi-domain fault features,changes the feature selection problem into multi-objective optimization problem and then uses the genetic algorithm to get the optimal feature subset. The experimental results show that the proposed method has a better dimensionality reduction performance for complex fault features,and can be used to effectively select a high quality fault feature subset,thus improving the effect the of fault diagnosis obviously.
作者 黄海安 王友仁 孙灿飞 陈伟 王俊 HUANG Haian;WANG Youren;SUN Canfei;CHEN Wei;WANG Jun(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Shanghai Aero Measurement & Control Technology Research Institute,Shanghai 201601,China)
出处 《机械制造与自动化》 2018年第4期13-16,43,共5页 Machine Building & Automation
基金 航空科学基金项目(2013ZD52055) 国家商用飞机制造工程技术研究中心创新基金项目(SAMC14-JS-15-051) 研究生创新基地(实验室)开发基金项目(kfjj20160305)
关键词 故障辨识 特征选择 遗传算法 行星齿轮箱 fault identification feature selection genetic algorithm planetary gearbox
  • 相关文献

参考文献2

二级参考文献28

  • 1TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000,290 (5500) :2319-2323.
  • 2VIACHOS M, DOMENICONI C, GUNOPULOS D, et al. Non-linear dimensionality reduction techniques for classi- fication and visualization [ C ]. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2002: 645-651.
  • 3ZHA H Y, ZHANG Z Y, Continuum Isomap for manifold learnings[J]. Computational Statistics & Data Analysis, 2007 (52) :184-200.
  • 4JIANG Q SH,JIA M P,HU H,et al. Machinery fault diagnosis using supervised manifold learning [ J ]. Mechanical Systems and Signal Processing, 2009, 23 ( 7 ): 2301-2311.
  • 5LI M, XU J W, YANG J H, et al. Multiple manifolds analysis and its application to fault diagnosis [ J ]. Mechanical Systems and Signal Processing, 2009, 23 ( 8 ): 2500-2509.
  • 6LEI Y G,ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm [J]. Mechanical Systems and Signal Processing,2009,23 (5) : 1535-1547.
  • 7SON J D, NIU G, YANG B S, et al. Development of smart sensors system for machine fault diagnosis [ J ]. Expert Systems with Applications,2009,36 (9) : 11981-11991.
  • 8HUANG N E, SHEN Z, LONG S R. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc. R. Soc. Lond. , A, 1998 (454) :903-995.
  • 9KOUROPTEVA O, OKUN O, HADID A,et al. Beyond locally linear embedding algorithm, MVG-01-2002 [ R ]. Finland : Machine Vision Group, University of Oulu, 2002 : 1-49.
  • 10Otman B,Yuan X H. Engine Fault Diagnosis Based on Multi-sensor Information Fusion Using Demp- ster-Shafer Evidence Theory[J]. Information Fu- sion, 2007,8(4): 379-386.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部