摘要
针对行星齿轮箱复杂故障难以辨识问题,提出一种基于遗传算法的行星齿轮系多目标故障特征优选方法。从振动信号中提取多域故障特征,建立了多域故障特征优选数学模型,将特征选择问题转化为多目标优化问题;采用遗传算法求解得到最优特征子集。实验表明,该方法对高维故障特征具有较好的降维性能,能有效选择高质量的故障特征子集,使得故障诊断性能明显提高。
Because it is hard to identify complex fault in planetary gearbox,this paper proposes a new method based on genetic algorithm which is used to extract the fault signals from vibration,establishes the mathematical optimization model for multi-domain fault features,changes the feature selection problem into multi-objective optimization problem and then uses the genetic algorithm to get the optimal feature subset. The experimental results show that the proposed method has a better dimensionality reduction performance for complex fault features,and can be used to effectively select a high quality fault feature subset,thus improving the effect the of fault diagnosis obviously.
作者
黄海安
王友仁
孙灿飞
陈伟
王俊
HUANG Haian;WANG Youren;SUN Canfei;CHEN Wei;WANG Jun(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Shanghai Aero Measurement & Control Technology Research Institute,Shanghai 201601,China)
出处
《机械制造与自动化》
2018年第4期13-16,43,共5页
Machine Building & Automation
基金
航空科学基金项目(2013ZD52055)
国家商用飞机制造工程技术研究中心创新基金项目(SAMC14-JS-15-051)
研究生创新基地(实验室)开发基金项目(kfjj20160305)
关键词
故障辨识
特征选择
遗传算法
行星齿轮箱
fault identification
feature selection
genetic algorithm
planetary gearbox