期刊文献+

双无人机协同测向时差定位的优化仿真

Optimal Simulation of AOA/TDOA Location by Two-UAVs
下载PDF
导出
摘要 在双无人机协同对目标进行测向时差定位时,因常用的直接解析算法存在定位模糊,提出了一种基于坐标变换的目标位置求解算法,利用坐标变换对目标位置进行求解,消除了模糊的目标位置。为了减小观测误差的影响,给出了一种利用滤波算法提高定位精度的方法,利用滤波算法对多组测量数据进行融合后,再对目标进行定位估计。仿真结果表明,基于坐标变换的目标位置求解算法可以使目标在观测站的各个方位上都能得到无模糊的目标位置,同时验证了粒子滤波相对扩展卡尔曼滤波对定位精度的改善效果更好。 When two-UAVs is used to localize target,the problem of ambiguous location exists in direct analytical algorithm commonly used in AOA/TDOA. So this paper proposes a solving method based on coordinate transformation which is used to eliminate the ambiguous target location. To diminish the influence of observational error,it also gives out the algorithm of filters to improve the location precision. This algorithm can be used to fuse the sets of measurement data and then estimate the target position. Simulation results show that the solving method based on coordinate transformation can be used to get unambiguous target location on omnibearing observation stations,and the location precision of PF is better than one of extended Kalman filter.
作者 刘云辉 姚敏 赵敏 LIU Yunhui;YAO Min;ZHAO Min(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械制造与自动化》 2018年第4期113-116,133,共5页 Machine Building & Automation
基金 中央高校基本科研业务费专项资金(NS2015030)
关键词 测向时差定位 坐标变换 粒子滤波 数据融合 AOA/TDOA coordinate transformation Particle Filter (PF) data fusion
  • 相关文献

参考文献6

二级参考文献45

  • 1李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 2王杰贵.基于DOA/多普勒信息的单站无源定位[J].火力与指挥控制,2007,32(6):87-90. 被引量:5
  • 3周一宇 卢起中 等.多站无源定位及其信号处理技术[A]..雷达无源定位跟踪技术研讨会论文集[C].北京,2001.53—59.
  • 4秦永元,等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2007.
  • 5Gavish M, Weiss A J. Performance analysis of bearing-only target location algorithms[J]. IEEE Trans Aerosp Electron System, 1992, 28(3): 817-828.
  • 6Nardone S C, Lindgren A G, Gong K F. Fundamental properties and performance of conventional bearings-only target motion analysis[J]. IEEE Trans Automatic Control, 1984, 29(8): 775-787.
  • 7Chan Y T, HO K C. A simple and efficient estimatorfor hyperbolic location[J]. IEEE Trans Signal Processing, 1994, 42(7): 1905-1915.
  • 8Huang Z, Lu J. Total least squares and equilibration algorithm for range difference location[J]. Electronic Letters, 2004, 40(5): 121-122.
  • 9Yang Kai, An Jian-ping, Bu Xiang-yuan, et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements[J]. IEEE Trans Vehicular Technology, 2010, 59(3): 1558-1662.
  • 10Ivan Markovsky, Diana M Sima, Sabine Van Huffel. Total least squares methods[J]. Wiley Interdisciplinary Reviews: Computational Statistcs, 2009, 2(2): 212-217.

共引文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部