期刊文献+

Metamorphic, deformation, fluids and geological significance of low-temperature retrograde mylonites of Diancangshan metamorphic massif along Ailaoshan-Red River strike-slip fault zone, Yunnan, China 被引量:4

Metamorphic, deformation, fluids and geological significance of low-temperature retrograde mylonites of Diancangshan metamorphic massif along Ailaoshan-Red River strike-slip fault zone, Yunnan, China
原文传递
导出
摘要 Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especially since the late Oligocene it widely suffered high-temperature ductile shear deformation and exhumation of the metamorphic rocks from the deep crust to the shallow surface. Based on the previous research and geological field work, this paper presents a detailed study on deformation and metamorphism, and exhumation of deep metamorphic rocks within the Diancangshan metamorphic massif,especially focusing on the low-temperature overprinted retrogression metamorphism and deformation of mylonitic rocks. With the combinated experimental techniques of optical microscope, electron backscatter diffraction attachmented on field-emission scanning electron microscopy and cathodoluminescence, our contribution reports the microstructure, lattice preferred orientations of the deformed minerals, and the changes of mineral composition phases of the superposition low-temperature retrograde mylonites. All these results indicate that:(1) Diancangshan deep metamorphic rock has experienced early high-temperature leftlateral shear deformation and late extension with rapid exhumation, the low-temperature retrogression metamorphism and deformation overprinted the high-temperature metamorphism, and the high-temperature microstructure and texture are in part or entirely altered by subsequent low-temperature shearing;(2) the superposition of low-temperature deformation-metamorphism occurs at the ductile-brittle transition; and(3) the fluid is quite active during the syn-tectonic shearing overprinted lowtemperature deformation and metamorphism. The dynamic recrystallization and/or fractures to micro-fractures result in the strongly fine-grained of the main minerals, and present strain localization in micro-domians, such as micro-shear zones in the mylonites. It is often accompanied by the decrease of rock strength and finally influences the rheology of the whole rock during further deformation and exhumation of the Diancangshan massif. Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especially since the late Oligocene it widely suffered high-temperature ductile shear deformation and exhumation of the metamorphic rocks from the deep crust to the shallow surface. Based on the previous research and geological field work, this paper presents a detailed study on deformation and metamorphism, and exhumation of deep metamorphic rocks within the Diancangshan metamorphic massif,especially focusing on the low-temperature overprinted retrogression metamorphism and deformation of mylonitic rocks. With the combinated experimental techniques of optical microscope, electron backscatter diffraction attachmented on field-emission scanning electron microscopy and cathodoluminescence, our contribution reports the microstructure, lattice preferred orientations of the deformed minerals, and the changes of mineral composition phases of the superposition low-temperature retrograde mylonites. All these results indicate that:(1) Diancangshan deep metamorphic rock has experienced early high-temperature leftlateral shear deformation and late extension with rapid exhumation, the low-temperature retrogression metamorphism and deformation overprinted the high-temperature metamorphism, and the high-temperature microstructure and texture are in part or entirely altered by subsequent low-temperature shearing;(2) the superposition of low-temperature deformation-metamorphism occurs at the ductile-brittle transition; and(3) the fluid is quite active during the syn-tectonic shearing overprinted lowtemperature deformation and metamorphism. The dynamic recrystallization and/or fractures to micro-fractures result in the strongly fine-grained of the main minerals, and present strain localization in micro-domians, such as micro-shear zones in the mylonites. It is often accompanied by the decrease of rock strength and finally influences the rheology of the whole rock during further deformation and exhumation of the Diancangshan massif.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第8期1023-1041,共19页 中国科学(地球科学英文版)
基金 supported by the National Key Research and Development Program (Grant No. 2017YFC0602401) the National Natural Science Foundation of China (Grant No. 41472188) the Excellent Youth Fund of National Natural Science Foundation of China (Grant No. 41722207)
关键词 Low-temperature mylonites Brittle-ductile transition Microstructure Fluid Exhumation Rheological weakening 变形岩石 低温度 糜棱岩 地质 液体 云南 中国 扫描电子显微镜
  • 相关文献

参考文献13

二级参考文献224

共引文献494

同被引文献94

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部