摘要
随着瓦斯浓度数据规模的不断扩增,目前已有的传统算法无法满足海量数据处理的要求。运用云计算在处理大数据集时的较强优势,首先在云平台下搭建了煤矿瓦斯浓度架构,提出了一种基于云计算的遗传优化Elman神经网络模型,并以唐山市某煤矿海量数据为基础进行实验。经验证,此算法在煤矿瓦斯浓度短期预测方面兼具高效性与可行性。
With the increase of gas concentration data size, the existing traditional algorithm can not meet the requirements of mass data processing, using the advantage of cloud computing in huge amounts of data processing, this article first has carried on the study of coal mine gas concentration based on cloud computing architecture, this paper proposes a cloud-based genetic algorithm optimization Elman neural network model, taking a coal mine gas concentration data somewhere in Tangshan as the foundation. The experiment shows that the algorithm is efficient and feasible in terms of short-term forecasting of coal mine gas concentration.
作者
刘晓悦
刘婉晴
郭强
LIU Xiao-yue;LIU Wan-qing;GUO qiang(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063009,China;Hebei Datang International Tangshan Power Plant,Tangshan 063000,China;Huaneng Hanfeng Power Plant,Handan 056000,China)
出处
《控制工程》
CSCD
北大核心
2018年第8期1364-1369,共6页
Control Engineering of China
基金
国家自然科学基金资助项目(61203343)
河北省自然科学基金资助项目(F2013209326)
河北省引进留学人员资助项目
关键词
煤矿
瓦斯浓度
预测
ELMAN神经网络
遗传算法
云计算
Coal mine
gas concentration
prediction
Elman neural network
genetic algorithm
cloud computing