期刊文献+

融合内容和改进协同过滤的个性化推荐算法 被引量:9

A Personalized Recommendation Algorithm Using Content and Improving Collaborative Filtering
下载PDF
导出
摘要 为了提高个性化推荐算法的推荐准确性,提出一种融合内容和改进协同过滤的推荐算法。首先,利用基于内容的过滤方法对未评分的项目进行预测,获得预测评分,从而构建了项目—评分矩阵,用于计算评分的Pearson相关系数。然后,在Pearson相关系数计算中融入项目热门系数,对传统协同过滤方法进行改进,并以此对项目给出最终的评分,从而产生推荐。另外,通过调和加权因子和用户加权因子,使基于内容推荐和协同过滤的评分结果能够更合理的融合。实验结果表明,与当前个性化推荐技术相比,所提算法能够有效解决用户评分数据稀疏的问题,具有更高的推荐精度。 In order to improve the recommendation accuracy of the personalized recommendation algorithm, a recommendation algorithm of fusion content and improving collaborative filtering is proposed. Firstly, the content-based filtering method is used to predict the unrated items to obtain the forecast scores, and build the project-scoring matrix which is used to calculate the Pearson correlation coefficient of the score. Then, the project hotspot coefficient is integrated in the Pearson correlation coefficient calculation, so as to improve the traditional collaborative filtering method. Finally, it gives the final score for the project and produces recommendations. In addition, the score based on content recommendation and collaborative filtering can be more rationally integrated by combining the weighting factor and the user weighting factor. Experimental results show that, compared with the current personalized recommendation technology, this method can effectively solve the problem of sparse user scoring data with higher recommendation accuracy.
作者 何波 潘力 HE Bo;PAN Li(Department of Information Engineering,Guangzhou Institute of Technology,Guangzhou 510925,China;Personnel Division,Zhengzhou Institute of Technology,Zhengzhou 450044,China)
出处 《控制工程》 CSCD 北大核心 2018年第8期1553-1558,共6页 Control Engineering of China
关键词 个性化推进 协同过滤 内容过滤 Pearson相关系数 加权因子 Personalized recommendation collaborative filtering content filtering Pearson correlation coefficient weighting factor
  • 相关文献

参考文献9

二级参考文献76

  • 1白丽君.基于内容和协作的信息过滤方法研究[J].情报学报,2005,24(3):304-308. 被引量:14
  • 2张宇镭,党琰,贺平安.利用Pearson相关系数定量分析生物亲缘关系[J].计算机工程与应用,2005,41(33):79-82. 被引量:100
  • 3ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 4BENNET J,LANNING S.The netflixprize[EB/OL].[2009-06-20].http://www,netflixprize,com/assets/NetflixPrizeKDD_to_appear.pdf.
  • 5BELL R,KOREN Y.Improved neighborhood-based collaborative filtering[EB/OL].[2009-06-20].http://public,research,att.com/-volinsky/netflix/cfworkshop,pdf.
  • 6SARWA B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web.New York:ACM,2001:285-295.
  • 7WANG JUN,de VRIES A P,REIDERS M J T.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2006:501-508.
  • 8MA HAO,KING I,LYU M R.Effective missing data prediction for collaborative filtering[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2007:39-46.
  • 9SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensianality reduction in recommender systems:A case study.[EB/OL].[2009-06-20].http://robotics.Stanford.edu/-ronnyk/WEBKDD2000/papers/sarwa.,pdf.
  • 10LINDEN G,SMITH B,YORK J.Amazon.corn recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.

共引文献215

同被引文献84

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部