期刊文献+

基于音速喷嘴固体内部温度分布的“热效应”分析 被引量:3

Analysis of Thermal Effects on Body Temperature Distribution of Sonic Nozzles
下载PDF
导出
摘要 由于音速喷嘴自身特殊的结构,气体在喷嘴中膨胀降温,低温气体与喷嘴固体内部结构的传热过程一方面会使喷嘴固体内部结构产生热膨胀现象,另一方面会使热边界层发生变化,称之为音速喷嘴"热效应".作为"热效应"的基本特性,音速喷嘴固体内部温度分布特性值得深入研究.首先结合音速喷嘴固体内部瞬态温度分布测量传感器及克里金空间插值算法,获得了瞬态温度分布云图.实验结果表明,喷嘴固体内部温度轴向分布呈现两端高中间低特点,实验最大温降达14.2,℃.接着分析了"热效应"对流量计量的影响.一方面,从有限元分析角度研究了喷嘴固体内部结构约束膨胀对流动特性的影响,对于喉径为2.15,mm的喷嘴,将喷嘴固体内部结构约束膨胀简化为自由膨胀修正流出系数会引起较大误差.另一方面,根据热边界层理论修正式计算发现,当温降为10,℃、喉部雷诺数为1.0×103时,由热边界层变化引起的流出系数误差达到0.408%,. For the special structure of the sonic nozzle, the gas expands and its temperature drops greatly when flow- ing through the sonic nozzle. The heat transfer between the nozzle body and the fluid produces a series of complex effects on nozzle body and thermal boundary layer called "thermal effects". As the essential characteristics of thermal effects, temperature distribution of the nozzle body was investigated further. Firstly, based on the temperature dis- tribution sensors and Kriging's interpolation method, the transient isothermal maps of nozzle body were obtained. It is found that the minimum temperature point appears in the middle of the nozzle and the temperature drop could be up to 14.2℃. Then, thermal effects on mass flow-rate of sonic nozzle were discussed from two aspects. The first one is constrained thermal expansion. Based on the FEA method, for the 2.15 mm nozzle, it is found that the constrained thermal deformation could not be simplified as free expansion to correct the discharge coefficient. The second one isthermal boundary layer. According to boundary layer theory, for typical body temperature drop of 10 ℃, the dis- charge coefficient at Re=1.0×10^3 will increase to 0.408% which cannot be ignored.
作者 王超 王孝通 丁红兵 安海骄 Wang Chao;Wang Xiaotong;Ding Hongbing;An Haijiao(School of Electrical and Information Engineering,Tiaxljin University,Tiaxljin 300072,China;Tiaxljin Key Laboratory of Process Measurement and Control,Tianjin 300072,China;Tiaxljin Institute of Metrological Supervision Testing,Tianjin 300192,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2018年第8期777-785,共9页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61627803 51506148 61673291) 天津市自然科学基金资助项目(16JCQNJC03700 15JCYBJC19200) 天津市过程检测与控制重点实验室基金资助项目(TKLPMC-201611)~~
关键词 音速喷嘴 热效应 温度分布 约束热膨胀 流出系数 sonic nozzle thermal effects temperature distribution constrained thermal expansion dischargecoefficient
  • 相关文献

参考文献3

二级参考文献30

  • 1齐利晓,张涛,邢娟.正压法音速喷嘴气体流量标准装置的研究及应用[J].计量学报,2009,30(2):125-129. 被引量:4
  • 2过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003,39(12):1-9. 被引量:113
  • 3LI C H, JONSON A. Bilateral comparison between NIM's and NIST's gas flow standards [ J ]. MAPAN Journal of Metrology Society of India, 2011,26(3 ) : 211-224.
  • 4LIM J M, YOON B H, OH Y K. The humidity effect on air flow rates in a critical flow venturi nozzle [ J ]. Flow Meas. Instrum. ,2011, 22 (5) :402-405.
  • 5MICKAN B, KRAMER R, DOPHEIDE D. Comparisons by PTB, NIST, and LNE-LADG in air and natural gas with critical venturi nozzles agree within 0. 05% [ C ]. Proc. of 6th Int. Symp. for Fluid Flow Meas, Queretaro, Mexico ,2006 : 16-18.
  • 6JOHNSON A, WRIGHT J. Comparison between theoreti- cal CFV flow models and nist's primary flow data in the laminar, turbulent, and transition flow regimes [ J ]. Jour- nal of Fluids Engineering, Transactions of the ASME, 2008,130(7) : 1-11.
  • 71SO 9300. Measurement of gas flow by means of critical flow venturi nozzles[ S]. 2005.
  • 8GUEMANA M, AISSANI S, HAFAIFA A. Flow meas- urement and control in gas pipeline system using intelli- gent sonic nozzle sensor [J].Studies in Informatics and Control, 2011,20 ( 2 ) : 85-96.
  • 9王新月.气体动力学基础[M].西安:西北工业大学出版社,2010.
  • 10JONES. Material temperature profiles in a critical flow nozzle[R]. New York: ASME, 1988.

共引文献20

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部