期刊文献+

Numerical study of radio wave propagation in clear air acoustic scatterer

Numerical study of radio wave propagation in clear air acoustic scatterer
下载PDF
导出
摘要 This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method for radio wave propagation and fluid simulation for atmospheric disturbance by acoustics waves. The characteristics of radio wave scattering propagation in the artificial acoustic perturbations are investigated by this numerical model. The numerical simulation results demonstrate that the radio wave propagation scattered by acoustic scatterer has the characteristic of forward tropospheric scatter. When the radio waves are scattered, they distribute in all directions; a majority of radio waves continues to propagate along the original direction, and only a small part of the energy is scattered. For the same acoustic scatterer, if we merely change the radio wave emission elevation, the horizontal spans of forward scattering radio wave packets centers gradually decrease with the increasing of emission elevations; and the energy of wave packets increases firstly and then decreases with launching elevation, reaching the maximum at a certain angle. If we merely change the wave emitting position, the horizontal spans decrease with the increasing of emission positions, and the energy of wave packets also increases firstly and then decreases with launch position, reaching the maximum at a certain position. This approach can be very promising for atmospheric scatter communications. This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method for radio wave propagation and fluid simulation for atmospheric disturbance by acoustics waves. The characteristics of radio wave scattering propagation in the artificial acoustic perturbations are investigated by this numerical model. The numerical simulation results demonstrate that the radio wave propagation scattered by acoustic scatterer has the characteristic of forward tropospheric scatter. When the radio waves are scattered, they distribute in all directions; a majority of radio waves continues to propagate along the original direction, and only a small part of the energy is scattered. For the same acoustic scatterer, if we merely change the radio wave emission elevation, the horizontal spans of forward scattering radio wave packets centers gradually decrease with the increasing of emission elevations; and the energy of wave packets increases firstly and then decreases with launching elevation, reaching the maximum at a certain angle. If we merely change the wave emitting position, the horizontal spans decrease with the increasing of emission positions, and the energy of wave packets also increases firstly and then decreases with launch position, reaching the maximum at a certain position. This approach can be very promising for atmospheric scatter communications.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期684-692,共9页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(41204111 41574146 41774162)
关键词 radio waves scattering propagation clear air atmo-sphere acoustic scatterer scatter communication. radio waves scattering propagation clear air atmo-sphere acoustic scatterer scatter communication.
  • 相关文献

参考文献1

二级参考文献2

  • 1刘俊平 李妍.对流层散射通信在美陆军中的应用.外军电信动态,2006,(2):30-35.
  • 2刘俊平 李妍.Army Communicator,2005,.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部