摘要
For coping with the multiple target tracking in the presence of complex time-varying environments and unknown target information, a time resource management scheme based on chance-constraint programming(CCP) employing fuzzy logic priority is proposed for opportunistic array radar(OAR). In this scheme,the total beam illuminating time is minimized by effective time resource allocation so that the desired tracking performance is achieved. Meanwhile, owing to the randomness of radar cross section(RCS), the CCP is used to balance tracking accuracy and time resource conditioned on the specified confidence level. The adaptive fuzzy logic prioritization, imitating the human decision-making process for ranking radar targets, can realize the full potential of radar. The Bayesian Crame ′r-Rao lower bound(BCRLB) provides us with a low bound of localization estimation root-mean-square error(RMSE), and equally important, it can be calculated predictively. Consequently, it is employed as an optimization criterion for the time resource allocation scheme. The stochastic simulation is integrated into the genetic algorithm(GA) to compose a hybrid intelligent optimization algorithm to solve the CCP optimization problem. The simulation results show that the time resource is saved strikingly and the radar performance is also improved.
For coping with the multiple target tracking in the presence of complex time-varying environments and unknown target information, a time resource management scheme based on chance-constraint programming(CCP) employing fuzzy logic priority is proposed for opportunistic array radar(OAR). In this scheme,the total beam illuminating time is minimized by effective time resource allocation so that the desired tracking performance is achieved. Meanwhile, owing to the randomness of radar cross section(RCS), the CCP is used to balance tracking accuracy and time resource conditioned on the specified confidence level. The adaptive fuzzy logic prioritization, imitating the human decision-making process for ranking radar targets, can realize the full potential of radar. The Bayesian Crame ′r-Rao lower bound(BCRLB) provides us with a low bound of localization estimation root-mean-square error(RMSE), and equally important, it can be calculated predictively. Consequently, it is employed as an optimization criterion for the time resource allocation scheme. The stochastic simulation is integrated into the genetic algorithm(GA) to compose a hybrid intelligent optimization algorithm to solve the CCP optimization problem. The simulation results show that the time resource is saved strikingly and the radar performance is also improved.
基金
supported by the National Natural Science Foundation of China(61271327
61671241)