期刊文献+

辛酸对反渗透膜的污染研究

Research on the pollution of RO membrane by octanoic acid
下载PDF
导出
摘要 以辛酸为模型污染物,分析了不同p H及Ca2+存在下辛酸对反渗透膜进水压力、产水TOC及脱盐率的影响。同时考察了海藻酸钠、蛋白质、腐殖酸等典型有机污染物共存时,辛酸在膜污染中的贡献。实验结果表明,当进水p H分别为4、7.5时,进水压力分别在污染运行的8、36 h内上升至初始压力的15%;p H为4时,Ca2+浓度的变化对膜污染无明显影响,产水中的TOC随着运行时间的延长而增加;p H为7.5时,运行时间随Ca2+浓度的增加而延长。不存在Ca2+时,相对海藻酸钠、蛋白质、腐殖酸而言,小分子质量的辛酸是造成膜污染的主要有机物。Ca2+存在时,海藻酸钠取代辛酸成为膜的主要有机污染物。 Using octanoic acid as a kind of model pollutant,the influences of octanoic acid on the influent pressure, TOC in produced water and desalination rate of reverse osmosis membrane have been analyzed under the conditions of different pH and the presence of Ca^2+. In addition, the contribution of oetanoie acid to membrane fouling in the coexistence of typical organic pollutants, such as alginate, protein, humic acid, etc., has been investigated. The results show that when the pH of the influent are 4 and 7.5 ,respectively,the influent pressure rises to 15% of the initial pressure within 8 h and 36 h, respectively. When pH is 4, the change of Ca^2+ does not have significant influence on membrane fouling, and TOC in the produced water increases with the increase of operation time. When the pH is 7.5,the operation time is prolonged with the increase of Ca^2+. In the absence of Ca^2+, small molecular weight octanoic acid is the main organic substance that causes membrane fouling in relation to alginate,protein and humic acid. In the presence of Ca^2+, alginate is the main organic pollutant that causes membrane fouling.
作者 罗美莲 Luo Meilian(Hunan Technical College of Railway High-Speed,Hengyang 421002,China)
出处 《工业水处理》 CAS CSCD 北大核心 2018年第8期66-70,共5页 Industrial Water Treatment
基金 湖南省教育厅科学研究项目(16C0389) 衡阳市科技局项目(2015KS25)
关键词 反渗透膜 辛酸 膜污染 有机复合污染 reverse osmosis membrane octanoic acid membrane fouling organic combined pollution
  • 相关文献

参考文献3

二级参考文献28

  • 1刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附对不同分子量有机物的去除[J].净水技术,2006,25(1):31-33. 被引量:43
  • 2Leppard G G, Mavrocordatos D, Perret D. Electron-optical charac- terization of nano- and micro-particles in raw and treated waters : an overview[J]. Water Science and Technology, 2004,50(12) : 1-8.
  • 3Fang H, Sun D D, Wu M, et al. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation pro- cess[J]. Water Science and Technology, 2005, 51 (6/7) : 373-380.
  • 4Tang C Y, Kwon Y N, Leckie J O. Fouling of reverse osmosis and nanofiltration membranes by humic acid--effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science, 2007,290(1/2) :86-94.
  • 5Jones K L, O'Melia C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces : effect of pH and ionic strength [J]. Journal of Membrane Science, 2000, 165 (1) : 31-46.
  • 6胡皆汉,郑学仿.实用红外光谱学[M].北京:科学出版社,2011:144-145.
  • 7Chen S S, Li CW, Hsu H D, etal. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes [J]. J Hazard Mater, 2009,(161):1075-1080.
  • 8Valero D, Garcia-Garcia V, Expbsito E, et al. Applica- tion of electrodialysis for the treatment of almond indus- try wastewater [J]. J Membr Sci, 2015, 476(15): 580 -589.
  • 9Lee H J, Choi J H, Cho J, Moon S H. Characterization of anion exchange membranes, fouled with humate dur- ing electrodialysis [J]. J Membr Sci, 2002, 203: 115- 126.
  • 10Lee H J, Park J S, Moon S H. A study on fouling miti- gation using pulsing electric fields in electrodialysis of lactate containing BSA [J]. Korean J Chem Eng, 2002, 19(5): 880-887.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部