期刊文献+

非均匀拓扑网络中的分布式一致性状态估计算法 被引量:4

Distributed consensus state estimation algorithm in asymmetrical networks
下载PDF
导出
摘要 分布式一致性状态估计是传感器网络中节点对目标的一种有效的估计融合方法。针对网络非均匀拓扑情况下的一致性状态估计问题,首先,研究了分布式传感器网络一致性状态估计框架,提出了四级功能模型,从信息处理、交互及融合的角度描述了一致性状态估计技术的主要流程;其次,考虑网络非均匀拓扑时一致性收敛速度较慢的情况,根据节点间通信链接的重要性设计了基于动态拓扑信息的自适应权值分配方法,在此基础上提出了基于自适应加权的卡尔曼一致性滤波(adaptive weighted Kalman consensus filter,AW-KCF)算法。仿真结果显示,AW-KCF在非均匀拓扑的稀疏网络中具有较快的一致性收敛速度。 Distributed consensus state estimation(DCSE)is an effective fusion method in sensor networks.For the DCSE problem with asymmetrical topology,a four-layer functional model which describes the main flow of consistency state estimation technology is firstly proposed from the perspective of information processing,interaction and fusion.And then,considering the network topology of asymmetrical consistency of slow convergence rate,an adaptive assignment algorithm for consensus-rate factor based on dynamic topology information is designed according to the importance of communication links between nodes,and a Kalman consensus filter named adaptive weighted Kalman consensus filter(AW-KCF)is proposed based on the adaptive consistency rate factor.Finally,the simulation results indicate that AW-KCF outperforms KCF with faster convergence rate in sparse networks with asymmetrical topology.
作者 刘瑜 刘俊 徐从安 王聪 齐林 丁自然 LIU Yu;LIU Jun;XU Cong'an;WANG Cong;QI Lin;DING Ziran(Research Institute of Information Fusion,Naval Aviation University,Yantai 264001,China;School of Electronic and Information Engineering,Beihang University,Beijing 100191,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2018年第9期1917-1925,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(61471383 61531020 61671463 91538201) 中国科协"青年人才托举工程"资助课题
关键词 传感器网络 非均匀拓扑 状态估计 卡尔曼一致性滤波 自适应权值分配 sensor network asymmetrical topology state estimation Kahnan consensus filter (KCF) adaptive weight (AW) assignment
  • 相关文献

参考文献1

二级参考文献10

  • 1H. W. Tsal, C. E Chu, T. S. Chen. Mobile object tracking in wireless sensor networks. Computer Communications, 2007, 30(8): 1811-1825.
  • 2J. Lin, E Cheung, L. Guibas. A dual-space approach to tracking and sensor management in wireless sensor networks. Proc. of 1st ACM International Workshop on Wireless Sensor Networks and Applications, 2002: 131-139.
  • 3X. Wang, S. Wang. Collaborative signal processing for target tracking in distributed wireless sensor networks. Journal of Par- allel and Distributed Computing, 2007, 67(5): 501-515.
  • 4W. P. Chen, J. C. Hou, L. Sha. Dynamic clustering for acoustic target tracking in wireless sensor networks. Proc. of 1st IEEE International Conference on Network Protocols, 2003: 284- 294.
  • 5C. Y. Chong, E Zhao, S. Mori, et al. Distributed tracking in wireless ad hoc sensor networks. Proc. of Sixth International Conference on Information Fusion, 2003:431 - 438.
  • 6E Mondinelli, Z. M. K-Vajna. Self-localizing sensor network architectures. IEEE Trans. on Instrumentation and Measure- ment, 2004, 53: 277-283.
  • 7Y. Xu, J. Winter, W. C. Lee. Dual prediction-based reporting for object tracking sensor networks. Proc. of First Annual Interna- tional Conference on Mobile and Ubiquitous Systems: Network- ing and Services, 2004: 154-163.
  • 8S. Ci, M. Guizani, H. Sharif. Adaptive clustering in wireless sensor networks by mining sensor energy data. Computer Com-munications, 2007, 30: 2968-2975.
  • 9O. Younis, S. Fahmy. Distributed clustering in ad hoc sensor networks: a hybrid, energy-efficient approach. 1EEE Trans. on Mobile Computing, 2004, 3(4): 366-379.
  • 10X. R. Wang, G. L. Xing, Y. E Zhang, et al. Intergralexi cover- age and connectivity configuration in wireless sensor networks. Proc. of the First ACM Conference on Embedded Networked Sensor Systems, 2003.

共引文献2

同被引文献33

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部