期刊文献+

基于改进蜂群聚类的欠定盲源分离 被引量:4

Underdetermined blind source separation based on improved bee colony clustering
下载PDF
导出
摘要 针对欠定盲分离中混合矩阵估计精度不高的问题,采用了改进的人工蜂群(ABC)聚类算法。从观测信号的线性聚类特点和蜂群的多样性考虑,改进雇佣蜂的搜索策略,从而加快算法的收敛速度。同时,引入基于Levy飞行的局部搜索方法,进一步对当前最优解的邻域进行搜索,提高ABC算法局部开发能力。仿真结果表明,该方法在源个数较多的情况下仍然有较高的混合矩阵估计精度。 To solve the problem that the estimation accuracy of the mixing matrix in the underdetermined blind separation is not high, this paper proposes an improved Artificial Bee Colony(ABC)clustering algorithm. From the linear clustering characteristics of the observed signals and the diversity of bee colony, this paper improves the search strategy of the employed bee in order to speed up the convergence rate of the algorithm. At the same time, the local search method based on Levy flight is introduced to search the neighborhood of the current optimal solution, which can improve the local development ability of ABC algorithm. The simulation results show that the proposed method has higher estimation accuracy under the condition that the number of sources is large.
作者 张伟灿 何选森 ZHANG Weican;HE Xuansen(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第17期243-248,共6页 Computer Engineering and Applications
基金 湖南省高校创新平台开放基金(No.14K022)
关键词 混合矩阵估计 人工蜂群算法 欠定盲分离 Levy飞行 mixing matrix estimation Artificial Bee Colony(ABC)algorithm Underdetermined Blind Source Separation(UBSS) Levy flight
  • 相关文献

参考文献2

二级参考文献17

  • 1章晋龙,谢胜利,何昭水.盲分离问题的可分性理论(英文)[J].自动化学报,2004,30(3):337-344. 被引量:6
  • 2高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 3高鹰,谢胜利,许若宁,李朝晖.基于粒子群优化算法的稀疏信号盲分离[J].系统仿真学报,2006,18(8):2264-2266. 被引量:11
  • 4Aissa-E1-Bey A, Linh-Trung N, Abed-Meraimet K, et al.. Underdetermined blind separation of nondisjoint sources in the time- frequency domain[J]. IEEE Transactions on Signal Processing, 2007, 55(3): 897-907.
  • 5Kim S G and Yoo C D. Underdetermined blind source separation based on subspace representation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2604-2614.
  • 6O'Grady P D and Pearlmutter B A. The LOST algorithm: finding lines and separating speech mixtures[J]. EURASIP Journal on Advances in Signal Processing, 2008, 784296: 1-17.
  • 7Reju V G, Koh S N, and Soon I Y. An algorithm for mixing matrix estimation in instantaneous blind source separation[J] Signal Processing, 2009, 89(9): 1762-1773.
  • 8Lu F B, Huang Z T, and Jiang W L. Underdetermined blind separation of non-disjoint signals in time-frequency domain based on matrix diagonalization[J]. Signal Processing, 2011, 91(7): 1568-1577.
  • 9Karaboga D and Ozturk C. A novel clustering approach: Artificial Bee Colony (ABC) algorithm[J]. Applied Soft Computing, 2011, 11(1): 652-657.
  • 10Zhang C S, Ouyang D T, and Ning J. An artificial bee colony approach for clustering[J]. Expert Systems with Applications, 2010, 37(7): 4761-4767.

共引文献14

同被引文献23

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部