期刊文献+

压缩映射原理在方程解研究中的两种形式及证明

Two Forms and Proofs of the Compression Mapping Principle in the Research of the Solutions to the Equations
下载PDF
导出
摘要 进一步阐明压缩映射原理在具非线性源项的偏微分方程初边值问题整体解的存在性及唯一性研究中的作用,列出此原理常用的几种形式,并给出证明.在理论和工程技术应用上,清晰解释了压缩映射理论的内部原理,证明了解的初值对整体解存在唯一性的影响,即整体解对初值的连续依赖性.这一讨论和分析清晰地说明了压缩映射原理处理问题的内部原理. In this article the compression mapping principle in the research of existence and uniqueness of solutions to the initial boundary value problem of partial differential equations with nonlinear source terms is further explained. Several forms and proofs of the principle are also studied. In theo-retical and engineering applications,the internal principle of the compression mapping principle is clearly explained. It is proved that the initial value effects the existence and uniqueness of the solutions. That is the global solutions de pend on continuously the initial value. This discussion and analysis explain clearly the internal principle of dealing with the problem by the compression mapping principle.
作者 张媛媛 ZHANG Yuan-yuan(Teaching and Research Department of Mathematics,Kaifeng University,Kaifeng 475000,Hena)
出处 《开封大学学报》 2018年第2期78-80,共3页 Journal of Kaifeng University
基金 河南省高等学校重点科研项目(18B110013) 开封市科技发展计划项目(1708008 1808007)
关键词 压缩映射 不动点 整体解 存在唯一性 compression mapping fixed point global solutions existence and uniqueness
  • 相关文献

参考文献2

二级参考文献13

  • 1Chang S. S., Cho Y. J., Zhou H. Y., Iterative methods for nonlinear operator equations in Banach spaces,New York: Nova Science Publishers, Inc. 2002.
  • 2Goebel K., Kirk W. A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math.Soc., 1972, 35(1): 171-174.
  • 3Browder F. E., Convergence of approximants to fixed pointd of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal., 1967, 24, 82-90.
  • 4Reich S., Strong convergence theorerns for resolvents of accretive operators in Banach spaces, J. Math. Anal.Appl., 1980, 75: 128-292.
  • 5Halpern B., Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 1967, 73: 957-961.
  • 6Lions P. L., Approximation de points fixes de contractions, C. R. Acad. Sci. Paris, Ser. A, 1977, 284:1357-1359.
  • 7Wittmann R., Approximation of fixed points of nonexpansive mappings, Arch. Math., 1992, 58: 486-491.
  • 8Shioji N., Takahashi W., Strong convergence of approximated sequence for nonexpansive mappings, Proc.Amer. Math. Soc., 1997, 125(12): 3641-3645.
  • 9Reich S., Approximating fixed points of nonexpansive mappings, Pan. Amer. Math. J., 1994, 4: 23-28.
  • 10Xu H. K., Another control condition in an iterarive method for nonexpansive mappings, Bull. Austral. Math.Soc., 2002, 65: 109-113.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部