期刊文献+

基于时频分析的自适应PCA辐射源调制识别 被引量:10

Research on emitter modulation recognition of the adaptive PCA based on time-frequency analysis
下载PDF
导出
摘要 针对复杂环境非合作通信模式下,识别调制方式运算复杂度高、识别率低的问题,提出一种基于时频分析的自适应特征提取识别算法。该算法结合二阶四阶矩估计法,利用信噪比自适应选取主成分分析特征,通过支持向量机分类器对辐射源调制方式进行识别。仿真结果表明,所提算法识别效果优于其他特征提取识别算法。在信噪比为0 dB时,识别率达到98%以上,较Hu矩和伪Zernike矩有12 dB左右的提升。该算法识别率高、运算量低,有较好的工程应用价值。 Aiming at the problem existing in the modulation recognition such as high computational complexity and lowrecognition rate in the non-cooperative communication mode of a complex environment, this paper proposes an adaptivefeature extraction and recognition algorithm based on time-frequency analysis. The algorithm, which combined with thesecond-order and fourth-order moment estimation method, uses the signal-to-noise ratio to select the principalcomponent analysis feature adaptively, and identifies the emitter modulation method by the support vector classifier.The simulation results show that the proposed algorithm is superior to other feature extraction algorithms. When thesignal-to-noise ratio is 0dB, the recognition rate is over 98%, which is about 12dB higher than that of Hu and pseudoZernike moments. The algorithm has some advantages of a high recognition rate and a low calculated amount, havinggood application value in engineering application.
作者 高敬鹏 孔维宇 刘佳琪 郜丽鹏 GAO Jingpeng;KONG Weiyu;LIU Jiaqi;GAO Lipeng(China College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;National Key Laboratory of Science and Technology on Test Physics & Numerical Mathematics,Beijing 100076,China)
出处 《应用科技》 CAS 2018年第5期33-37,共5页 Applied Science and Technology
基金 国家自然科学基金面上项目(61371099) 中央高校基本科研业务费专项项目(HEUCF150814 HEUCFG201832)
关键词 辐射源调制 自适应 主成分分析 不变矩 时频分析 特征提取 支持向量机 分类器 emitter modulation adaptive principal component analysis moment invariants time-frequency analysis feature extraction support vector machines classifier
  • 相关文献

参考文献10

二级参考文献97

共引文献158

同被引文献125

引证文献10

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部