期刊文献+

Biocompatibility Pathways in Tissue-Engineering Templates 被引量:1

Biocompatibility Pathways in Tissue-Engineering Templates
下载PDF
导出
摘要 组织工程通过系统结合分子信号和力学信号对特定靶细胞进行有意可控刺激以组建新的组织,通常需要借助由生物材料构建的结构传递这些信号,并对生成的组织块塑形。这些结构之前被称为支架,如今被更准确地命名为模板,其规范却难以定义,主要因为该规范必须涉及为细胞组建新组织提供适宜的微环境,以及细胞与模板材料的相互作用符合构建新型可存活组织的需求。这些特点统称为生物相容性。然而,传统生物相容性的理论和公认机制(大多通过可移植的医学装置进行实验得出)不足以解释在组织工程过程中的现象。本文作者近期在特定的基于材料、生物学的途径方面重新定义了生物相容性。本文以上述途径为前提讨论了组织工程生物相容性的机制。 Tissue engineering, which involves the creation of new tissue by the deliberate and controlled stimula- tion of selected target cells through a systematic combination of molecular and mechanical signals, usu- ally involves the assistance of hiomaterials-hased structures to deliver these signals and to give shape to the resulting tissue mass. The specifications for these structures, which used to be described as scaffolds hut are now more correctly termed templates, have rarely been defined, mainly because this is difficult to do. Primarily, however, these specifications must relate to the need to develop the right microenvironment for the cells to create new tissue and to the need for the interactions between the cells and the template material to he consistent with the demands of the new viable tissues. These features are encompassed by the phenomena that are collectively called hiocompatihility. However, the theories and putative mechanisms of conventional biocompatibility (mostly conceived through experiences with implantable medical devices) are inadequate to describe phenomena in tissue-engineering processes. The present author has recently redefined biocompatibility in terms of specific materials- and biology-based pathways; this opinion paper places tissue-engineering biocompatibility mechanisms in the context of these pathways.
出处 《Engineering》 2018年第2期122-126,共5页 工程(英文)
关键词 组织工程 医疗装置 工程管理 工程施工 Biomaterials Scaffolds Mechanotransduction Inflammation Topography
  • 相关文献

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部