期刊文献+

计算主义形式系统难题:基于哥德尔不完全性定理的讨论

Computationalism Problem of Formal System: a Discussion Based on Gdel's Incompleteness Theorem
下载PDF
导出
摘要 通过分析基于哥德尔不完全性定理的挑战,认为其对计算主义的批判是不成立的。虽然哥德尔不完全性定理确实可以打击形式系统,但却并不能说明它驳倒了计算主义,因为计算系统不是纯粹形式系统,而是由形式系统与非形式系统共同构成的完整系统,仅从形式系统来理解计算系统是偏狭的。卢卡斯等人对计算主义的反对与其论证背后的哲学预设"人心至上论"有关,从这个预设出发,自然会得出不利于计算主义的结论,而如果给予计算机和人以平等地位的话,并不能得出人心优于机器的结论。 Based on analysis,it is concluded that the challenge from Godel's incompleteness theorem against computationalism is not valid. Although Godel's incomplete theorem is proved forceful challenge against formal sys-tem ,it does not follow that it can successfully confute computationalism since the computation system is not a sole formal system. It is provincial to view the computational system as formal, because it is built up of formal systems at lower level and informal systems at higher level. Lucas and others' arguments against computationalism are based on the philosophical premise of anthropocentrism from which naturally arises the view that is unfavorable to computationalism. When computer and human are treated equally, it will be found that human mind is not necessa-rily superior to machines.
作者 赵小军 ZHAO Xiao-jun(College of History and Political Science,Guizhou Normal University, Guiyang 550001,Chin)
出处 《洛阳师范学院学报》 2018年第7期12-19,共8页 Journal of Luoyang Normal University
基金 贵州师范大学2016年博士科研启动项目(12004-0516018)
关键词 形式系统 计算主义 哥德尔不完全性定理 formal system computationalism Godel's incompleteness theorem
  • 相关文献

参考文献2

二级参考文献27

  • 1郭贵春,郝宁湘.丘奇-图灵论点与人类认知能力和极限[J].齐鲁学刊,2004(5):65-70. 被引量:5
  • 2[美]欧内斯特·内格尔,詹姆士·R纽曼.哥德尔证明[M].陈东威,连永君译.北京:中国人民大学出版社,2008.
  • 3(美)王浩.哥德尔[M].上海:上海世纪出版集团,上海译文出版社,2002.184-185、215.
  • 4玛格丽特·博登.《人工智能哲学》,刘西瑞、王汉琦译,上海译文出版社,2001年,第419页.
  • 5Martin Davis, "The Myth of Hypercomputation", Christof Teuscher, ed. , Alan Turing: Life and Legacy of a Great Thinker, Springer, 2004, pp. 21 - 195.
  • 6Gordana Dodig Crnkovic, "Dynamics of Information as Natural Computation", Information, 2, 2011, pp. 460 - 477.
  • 7Mike Stannett, "The Case for Hypercomputation", Applied Mathematics and Computation, 178, 2006, pp. 8 - 24.
  • 8A. Syropoulos, Hypercomputation : Computing Beyond the Church- Turing Barrier, Springer, 2008, p. 165.
  • 9卢西亚诺·弗洛里迪.《计算与信息哲学导论》,刘钢译,商务印书馆,2010,第331页;第317页.
  • 10S. Lloyd, Programming the Universe, Vintage Books, 2006, p. 3.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部