期刊文献+

基于最优运动矢量预测过程的改进与优化 被引量:1

Improvement and optimization of optimal motion vector prediction process
下载PDF
导出
摘要 为解决UmhexagonS算法在预测最优运动矢量过程中运动估计时间消耗较大的问题,提出一种改进的情景分类(situation classification UMHS,SCUMH)算法。在起始点搜索环节得到最优点后,直接进入EDR模型的三步迭代运动情景分类判定;对大范围搜索模型进行矢量预测,根据最优预测运动矢量落入范围采取1/8区域划分搜索;在5×5搜索模型中,根据运动矢量的分布特性采取一种由内向外扩展的搜索顺序,节省了运动估计时间。实验结果表明,在运动估计时间方面,SCUMH算法比UmhexagonS算法节省了33.48%,在微运动情景下节省了27.05%,PSNR与码率基本不变。 To solve the high time consumption of the UmhexagonS algorithm in the optimal motion vector estimation,an improved situation classification algorithm was proposed.After obtaining the best point in the searching period,three-step iterative motion scene classification of the EDR model was applied directly.The 1/8 area division searches method was used according to the best predictive motion vector dropping range.Basing on the distribution characteristics of the motion vectors,a searching sequence from inward to outward was taken,which saved the motion estimation time in the 5×5 search model.Experimental results show that the proposed solution can save 33.48% of motion estimation time and about 27.05% of that in the slow motion situation in comparison with the UmhexagonS algorithm,and the PSNR and the bit rate are essentially unchanged.
作者 蔡宜 周金治 CAI Yi1,2 , ZHOU Jin -zhi1,2(1. School of information Engineering, Southwest University of Science and Technology, Mianyang 621010, China; 2. Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, Chin)
出处 《计算机工程与设计》 北大核心 2018年第8期2484-2489,2543,共7页 Computer Engineering and Design
基金 国家自然科学基金面上基金项目(51475453)
关键词 非对称十字多层六边形搜素 运动估计 三步迭代分类 预测运动矢量 运动情景分类 UmhexagonS motion estimation three-step iterative classification predictive motion vector motion situation classification
  • 相关文献

参考文献4

二级参考文献42

  • 1梁燕,刘文耀.基于起点预测的自适应交叉-准菱形运动估计算法[J].光学精密工程,2005,13(2):237-246. 被引量:7
  • 2LI R,ZEN G B,LIOU M L.A new three-step search algorithm for block motion estimation[J].IEEE Transactions on Circuits and Systems for Video Technology,1994,(4):438-442.
  • 3ZHU S,MA K K.A new diamond search algorithm for fast block-matching motion estimation[J].IEEE Trans.Image Processing,2000,2(9):2872290.
  • 4ZHU C,LIN X,CHAU L P.Hexagon-based search pattern for fast block motion estimation[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(5):349-355.
  • 5HOSUR P I,MA K K.Motion vector field adaptive fast motion estimation[C].Int.Conf.Information,Communications and Signal Processing (ICICS 1999),1999:1-4.
  • 6TOURAPIS A M,AU O C,LIOU M L.Predictive motion vector field adaptive search technique (PMVFAST) enhancing block-based motion estimation[C].Proc.SPIE Conf.Visual Communication and Image Processing,2001:883-892.
  • 7CHEN Z B,XU J F,HE Y,et al..Fast integer-pel and fractional-pel motion estimation for H.264/ AVC[J].Visual Communication and Image Representation,2006,17(2):264-290.
  • 8JIA H J,ZHANG L.Directional diamond search pattern for fast block motion estimation[J].Electronics -Letters,2003,39(22):1581-1583.
  • 9EZHILARASAN M,THAMBIDURAI P.Simplified block matching algorithm for fast motion estimation in video compression[J].Journal of Computer Science,2008,4(4):282-289.
  • 10UKALKAR A R,BAWANE N G.Analysis of low complexity motion estimation algorithms for H.264 video compression standard[C].Proceedings of the International MultiConference of Engineers and Computer Scientists,2009:18-20.

共引文献16

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部