期刊文献+

少驱动四足机器人设计与仿真 被引量:4

Design and Simulation of Quadruped Robot with Less Actuators
下载PDF
导出
摘要 文章提出了一种用少驱动(驱动源数目少于关节数)重构猎豹复杂步态的四足机器人设计方法。运用主成分分析方法(PCA)研究了猎豹在Gallop步态下腿部各关节运动之间的协同性,提取了对运动起主要影响的特征量(各变量的主元)和对应的运动重构矩阵。研究发现,四个髋关节与四个膝关节复杂运动分别需要两个主元来重构。基于这一结论,提出了一种实现复杂运动重构矩阵的紧凑型机械结构设计方法,开发了新型少驱动四足机器人的原型样机。基于Solidworks的仿真实验验证了四足机器人重构Gallop步态的可行性与机械结构设计的合理性。 This paper proposes a design method of quadruped robot with less actuators(the number of actuators less than joints')to reconstruct complicated gait of cheetah. We use Principal Component Analysis(PCA)to study the synergy of motion of joints of all legs of cheetah in gallop gait,abstain characteristic quantities(Principal Components of each variables)and corresponding matrix reconstructing motion. The research shows that complicated motion of four hip joints and four knee joints both need two Principal Components to reconstruct. Basing on this conclusion,we propose a design method of compact mechanical structure implementing matrix reconstructing complicated motion,and develop prototype of the novel quadruped robot with less actuators. And the simulation based on Solidworks verifies the feasibility of quadruped robot reconstructing gallop gait and the rationality of the design of mechanical structure.
作者 谢伟林 聂华 孙容磊 孙柏杨 XIE Wei-lin1,NIE Hua2,SUN Rong-lei1,SUN Bai-yang1(1.Sate Key Lab of Digital Manufacturing Equipment & Technology,Huazhong University of Science and Technology,Hubei Wuhan 430074, China;2.China Ship Development and Design Center, Hubei Wuhan 430061, Chin)
出处 《机械设计与制造》 北大核心 2018年第8期244-247,共4页 Machinery Design & Manufacture
关键词 四足机器人 主成分分析 几何约束方法 Quadruped Robot Principal Component Analysis Geometrical Constraint
  • 相关文献

参考文献4

二级参考文献28

  • 1Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough- terrain quadruped robot[C]//Proceedings of the 17th Interna-tional Federation of Automation Control. Amsterdam, Nether- lands: Elsevier, 2008: 10822-10825.
  • 2Semini C, Tsagarakis N G, Guglielmino E, et al. Design of HyQ - A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(6): 831-849.
  • 3Boaventura T, Semini C, Buchli J, et al. Dynamic torque con- trol of a hydraulic quadruped robot[C]//IEEE International Con- ference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1889-1894.
  • 4Kim H K, Kwon O, Won D H, et al. Foot trajectory generation of hydraulic quadruped robots on uneven terrain[C]//Proceedings of the 17th IFAC World Congress. Amsterdam, Netherlands: El- sevier, 2008: 3021-3026.
  • 5Cai R B, Chen Y Z, Hou W Q, et al. Trotting gait of a quadruped robot based on the time-pose control method[J]. International Journal of Advanced Robotic Systems, 2013, 10: No.148.
  • 6Jiang Z Y, Li M T, Guo W. Running control of a quadruped robot in trotting gait[C]//IEEE International Conference on Robotics, Automation and Mechatronics. Piscataway, USA: IEEE, 2011: 172-177.
  • 7Wang X, Li M T, Wang P F, et al. Running and turning con- trol of a quadruped robot with compliant legs in bounding gait[C]//IEEE International Conference on Robotics and Au- tomation. Piscataway, USA: IEEE, 2011:511-518.
  • 8Cai R B, Chen Y Z, Lang L, et al. Inverse kinematics of a new quadruped robot control method[J]. International Journal of Ad- vanced Robotic Systems, 2013, 10: No.46.
  • 9Rong X W, Li Y B, Ruan J H, et al. Design and simulation for a hydraulic actuated quadruped robot[J]. Journal of Mechanical Science and Technology, 2012, 26(4): 1171-1177.
  • 10Masuda T, Kimura H, Takase K. Emergence of a quadrupedal bound gait as interaction among the brain, body and environ- ment[C]//Proceedings of SICE Annual Conference 2008 - In- ternational Conference on Instrumentation, Control and Infor- mation Technology. Tokyo, Japan: Society of Instrument and Control Engineers, 2008: 2501-2506.

共引文献79

同被引文献58

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部