摘要
现有有向传感器网络调度算法多数只面向同构传感器节点,而未考虑节点异构性对算法性能的影响。为此,提出一种基于学习自动机的异构有向节点调度算法。将节点调度问题转化为集合覆盖问题后,利用学习自动机的特性自适应地更新所选取感知方向的概率,从而构建多个满足条件的节点覆盖集合。仿真结果表明,与贪婪算法相比,该算法能有效减少能量消耗并延长网络寿命。
Most existing directed sensor network scheduling algorithms only focus on isomorphic sensor nodes,without considering the influence of node heterogeneity on the performance of the algorithm. To solve this problem,a heterogeneous nodes scheduling algorithm based on learning automata is proposed. The node scheduling problem is transformed into a set coverage problem,and the probability of the selected perception direction is adaptively updated by using the characteristics of learning automata to construct a number of node coverage sets with satisfying conditions.Simulation results show that compared with greedy algorithm,the proposed algorithm can effectively reduce energy consumption and prolong network lifetime.
作者
李明
胡江平
LI Ming1,2, HU Jiangping2(1. Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing Technology and Business University, Chongqhag 400067, China; 2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Chin)
出处
《计算机工程》
CAS
CSCD
北大核心
2018年第8期199-203,共5页
Computer Engineering
基金
重庆教委科学技术研究项目(KJ1600627
KJZH17124)
重庆市检测控制集成系统工程实验室开放课题(611315002)
重庆市社会科学规划项目(2017YBGL142)
关键词
有向传感器网络
节点异构性
节点调度
学习自动机
贪婪算法
directed sensor network
node heterogeneity
node scheduling
learning automata
greedy algorithm