期刊文献+

室内场景的布局估计与目标区域提取算法

Layout Estimation and Object Region Extraction Algorithm for Indoor Scene
下载PDF
导出
摘要 现有的目标提取方法在应用于复杂的室内场景图像时,容易出现小尺寸物体与平面区域中物体被忽视,以及因遮挡造成大物体提取错误等问题。为此,提出一种针对室内RGB-D场景的无监督布局估计与目标区域提取算法。利用3D点云进行平面分割与分类以完成布局估计,采用2种图像分割方法对RGB-D图像做过分割处理,并利用4种相似度衡量方式进行层次分组。在此基础上,根据布局估计的结果,对不同类别的区域采取不同的边界框匹配策略。实验结果表明,该方法无需预训练即可改善目标区域提取效果,在产生较少目标候选区的情况下提高边界框召回率,加快计算速度。 When applying most existing object proposal methods on complex indoor scenes,the results show that there are some problems such as ignoring the small size object and objects in planar regions and detection inaccuracies of big objects caused by occlusion. Aiming at above these problems,this paper proposes a layout estimation and object region extraction algorithm for indoor RGB-D scenes. Firstly,it uses the 3D point cloud for plane segmentation and classification. Secondly,it adopts two segmentation methods using RGB-D data for obtaining crude object segments and then utilizes four similarity measures for hierarchical grouping. Finally,based on the results of layout estimation,it takes diversification strategies to fit bounding boxes for different regions. Experimental result shows that the proposed algorithm can improve extraction efficiency obviously and improve bounding box proposal recall score with fewer object candidates. In addition,it does not need pre-training and has fast calculation speed.
作者 吴晓秋 霍智勇 WU Xiaoqiua ,HUO Zhiyonga,b(a. College of Telecommunications and Information Engineering;b. Jiangsu Provincial Key Lab of Image Processing and Image Communication, Nanjing University of Posts and Telecommunications, Nanjhag 210003, Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第8期257-262,267,共7页 Computer Engineering
基金 国家自然科学基金(61471201 61501260) 江苏省高校自然科学研究重点项目(13KJA510004) 江苏省自然科学基金青年基金(BK20130867) 江苏省"六大人才高峰"项目(2014-DZXX-008)
关键词 深度信息 特征融合 室内场景 布局估计 图像分割 目标提取 depth information feature fusing indoor scene layout estimation image segmentation obj ect extraction
  • 相关文献

参考文献3

二级参考文献19

  • 1Saslow D, Solomon D, Lawson H W, et al. American cancer so?ciety, American society for colposcopy and cervical pathology , and American society for clinical pathology screening guidelines for the prevention and early detection of cervical cancer[J] . CA CancerJournal for Cliniciams, 2012, 62(3): 147-172.
  • 2Kitchener H C, Blanks R, Dunn G, et al. Automation-assisted versus manual reading of cervical cytology: a randomised con?trolled trial[J]. The Lancet Oncology, 2011,12(1): 56-M.
  • 3Li K, Lu Z, Liu W, et al. Cytoplasm and nucleus segmentation in cervical smear images using radiating GVF snake[J]. Pattern Recognition, 2012, 45(4): 1255-1264.
  • 4Bergmeir C, Silvente M G, BenitezJ M. Segmentation of cervical cell nuclei in high-resolution microscopic images: a new algo?rithm and a web-based software framework[J]. Computer Meth?ods and Programs in Biomedicine, 2012, 107 (3) : 497-512.
  • 5Zhang L, Chen S. Wang T, et al. A practical segmentation . method for automated screening of cervical cytology[C] / / Pro?ceedings of the 2011 International Conference on Intelligent Com?putation and Bio- Medical Instrumentation. Wuhan, Hubei , IEEE Computer Society. 2011: 140-143.
  • 6Al-Kofahi Y, Lassoued W, Lee W, et al. Improved automatic detection and segmentation of cell nuclei in histopathology images[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(4): 841-852.
  • 7Lou X, Koehe U, WittbrodtJ, et al. Learning to segment dense cell nuclei with shape prior[C] / / Proceedings of the 2012 IEEE Conference on Computer vision and Pattern Recognition. Providence RI: IEEE Computer Society. 2012: 1012-1018.
  • 8Nath S K,Palaniappan K,Bunyak F. Cell segmentation using cou?pled level sets and graph-vertex coloring[C] / / Proceedings of Med Image Comput Comput Assist Interv. Copenhagen, Den?mark: PMC. 2006: 101-108.
  • 9Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transaction on Systems, Man, and Cybernetics, 1979, 9(1) : 62-66.
  • 10Comaniciu D, Meer P. Mean-shift: a robust approach toward fea?ture space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部