摘要
为适应高速网络环境并实现对网络流量的准确测量,提出一种将计数型布隆过滤器结构与基于报文的流抽样技术相结合的网络流等概率抽样算法。利用4 bit的Counter向量识别是否有新流出现,通过实时调整抽样频率弥补新流判定中的错误率,从而对网络流进行等概率抽样并获取较真实的网络流分布情况。实验结果表明,该算法的测量结果与网络流真实值较接近,且具有可扩展性,可以满足当前复杂多变的高速网络环境下的流量测量需求。
In order to adapt to the high-speed network environment and realize the accurate measurement of network traffic,a network algorithm of flowequal probability sampling based on the combination of Counting Bloom Filter and packet-based flowsampling technique is proposed. It identifies whether there is a new flow by the 4 bit Counter vector,and realizes the equal probability sampling of the network flow by adjusting the sampling frequency constantly to compensate for the error rate of the new flow judgement. Then,it makes an equal probability sampling of network flowand obtains a more realistic distribution of network traffic. Experimental results show that the algorithm 's measurement results are close to the real value of network flow,and it has scalability,which can meet the current demand of traffic measurement in the complex and changeable high-speed network environment.
作者
翟金凤
孙立博
鲁凯
林学勇
秦文虎
ZHAI Jinfeng1, SUN Libo1, LU Kai2, LIN Xueyong2, QIN Wenhu1(1. School of Instrument Science and Engineering, Southeast University,Nanjing 210096, China;2. Nanjhag Metrology Supervision and Inspection Institute,Nanjing 210049, Chin)
出处
《计算机工程》
CAS
CSCD
北大核心
2018年第8期273-278,共6页
Computer Engineering
基金
国家质量监督检验检疫总局科技计划项目"网络公正性检测方法研究"(2015QK059)
中央高校基本科研业务费专项(2242017K40114)
江苏省重点研发计划项目"智能网联汽车车载网络架构设计及其信息安全防护关键技术研发"(BE2017035)