期刊文献+

聚氨酯酰亚胺/有机硅改性环氧树脂涂料的耐热性能研究 被引量:3

Study on Heat Resistance of Polyurethane-imide/Silicone Modified Epoxy Coatings
下载PDF
导出
摘要 制备了有机硅改性的环氧树脂,与环氧树脂配比使用,加入合成的端羧基聚(氨酯-酰亚胺)材料,利用固化剂多官能团氮丙啶CX-100低温固化形成聚氨酯-酰亚胺-有机硅改性环氧树脂(PUI/SiEP)复合材料。用透射电镜(TEM)、动态热机械分析(DMA)和热失重分析(TGA)考察了复合材料的微观结构与耐热性能。有机硅改性环氧树脂增强了涂膜的耐热性,含硅的比不含硅的复合材料5%和10%分解温度提高了30℃以上。复合材料中有机硅的质量百分数为15%和20%时各性能差异不大,但20%时出现了较为明显的相分离,所以最佳的有机硅添加量为15%。 Silicone modified epoxy resin,which has been prepared by the reaction of bisphenol A type epoxy resin( DGEBA) and isocyanate terminated siloxane,was blended with epoxy resin,carboxyl poly( urethane imide)material. Polyurethane imide-silicone modified epoxy resin( PUI/EP/Si) composite materials were formed with the binding of CX-100. Transmission electron microscopy( TEM),dynamic thermal mechanical analysis( DMA) and thermogravimetric analysis( TGA) have been carried out to measure the composite materials. The results showed that with the increase of silicone content,heat resistance of the film were enhanced. The T5% and T10% of the PUI/Si-EP were above 30℃ higher than PUI/EP. The performance was indifferent when the content of siloxane in the composite mass percentage was 15% or 20%,but phase separation occurred when the siloxane concentration was 20%,so the best concentration was 15%.
作者 张青芳 王翠琼 刘平桂 ZHANG Qing-fang;WANG Cui-qiong;LIU Ping-gui(Department of Chemistry,Changsha Medical University,Changsha 410219,Hunan,China;Beijing Institute of Aeronautical Materials,Beijing 100095,China)
出处 《合成材料老化与应用》 2018年第3期24-27,114,共5页 Synthetic Materials Aging and Application
基金 湖南省教育厅科研项目(2016C0152 2017C0151)
关键词 环氧树脂 改性 聚氨酯 硅氧烷 低温固化 epoxy resin modification polyurethane silicone low-temperature curing
  • 相关文献

参考文献4

二级参考文献30

  • 1赵景丽,李河清.国内提高环氧树脂耐热性的研究进展[J].工程塑料应用,2005,33(8):68-70. 被引量:15
  • 2蔡永源,李彤,孔莹,马洪声.环氧树脂胶粘剂应用进展[J].化工新型材料,2005,33(11):17-20. 被引量:33
  • 3Wang J Q, Li Y, Tian H Y, Sheng J L, Yu J Y, Ding B. Waterproof and breathable membranes of waterborne fluorinated polyurethane modified electrospun polyacrylonitrile fibers [J]. RSC Adv., 2014, 4: 61068-61076.
  • 4Ge J F, Si Y, Fu F, Wang J L, Yang J M, Cui L X, Ding B, Yu J Y, Sun G. Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances [J]. The Royal Society of Chemistry, 2013, 3: 2248-2255.
  • 5Mao X, Chen Y C, Si Y, Li Y, Wan H G, Yu J Y, Sun G, Ding B. Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances [J]. The Royal Society of Chemistry, 2013, 3: 7562-7569.
  • 6Mondal S, Hu J L, Yong Z. Free volume and water vapor permeability of dense segmented polyurethane membrane [J]. Journal of Membrane Science, 2006, 280: 427-432.
  • 7Yen M S, Tsai H C, Hong P D. Effect of soft segment composition on the physical properties of nonionic aqueous polyurethane containing side chain PEGME [J]. Journal of Applied Polymer Science, 2007, 105: 1391-1399.
  • 8Rahman M M, Kim H D, Lee W K. Preparation and characterization of waterborne polyurethane/clay nanocomposite: effect on water vapor permeability [J]. Journal of Applied Polymer Science, 2008, 110: 3697-3705.
  • 9Tsai H C, Hong P D, Yen M S. Preparation and physical properties of nonionic aqueous polyurethane coatings containing different side chain PEGME length [J]. Journal of Applied Polymer Science, 2008, 108: 2266-2273.
  • 10Lomax G R. Breathable polyurethane membranes for textile and related industries [J]. Journal of Materials Chemistry, 2007, 17: 2775-2784.

共引文献28

同被引文献645

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部