摘要
采用特征值标准差和欧氏距离分布熵方法,构造信号多维特征向量评价模型,探讨信号特征向量稳定性和可分性的评价标准.仿真实验结果表明,多维特征向量在稳定性和可分性指标上达到0.192 3和0.287 4,相比一维特征向量有较大的优势,可以作为应力波信号特征向量的评价方法,能够为后续智能检测选取出性能较好的特征向量.
Using the feature standard deviation and Euclidean distance distribution entropy methods,construct a signal multidimensional eigenvector evaluation model to explore the evaluation standard of signal feature stability and separability.Simulation results show that the multi-dimensional feature vectors reach 0.1923 and 0.2874 in terms of stability and separability,compared with the one-dimensional feature vector,the multi-dimensional feature vector has a great advantage,so the evaluation methods can be used as a stress wave signal feature vector evaluation methods for subsequent intelligent detection selects better feature vectors.
作者
李敬德
LI Jing-de(No.36th Research Institute of CETC, Jiaxing 314033, Chin)
出处
《牡丹江师范学院学报(自然科学版)》
2018年第3期33-38,共6页
Journal of Mudanjiang Normal University:Natural Sciences Edition
基金
国家自然科学基金项目(61371174)
关键词
特征向量
评价
稳定性
可分性
feature vector
evaluation
stability
separability