摘要
为了发现过程模型漂移的时间点,提出一种基于活动关系频繁度的日志分割方法。事件日志可以用活动关系抽象表示。通过关系抽取将事件日志转化为活动关系矩阵,然后分析每个活动关系的变化趋势并检测出候选变更点将所有候选变更点通过密度聚类的方式进行合并,得到模型漂移的时间点。在人工生成日志上的实验结果表明,算法具有良好的准确率、较小的误差和较低的时间消耗。
To detect change points from event logs based on relation frequency, an approach was proposed with concept drift phenomenon in process mining. Event logs could be characterized by relationships between activities and transformed into a relation matrix. By analyzing the variation of activity relations, candidate change points were detected. The final result was calculated from candidate change points via DBSCAN. Experiments on synthetic logs showed that the proposed approach possessed high accuracy, low error and good time performance.
作者
郑灿彬
闻立杰
王建民
ZHENG Canbin, WEN Lijie, WANG Jianmin(School of Software, Tsinghua University, Beijing 100084,Chin)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2018年第7期1589-1597,共9页
Computer Integrated Manufacturing Systems
基金
国家重点研发计划资助项目(2016YFB1001101)
国家自然科学基金资助项目(61472207
61325008
71690231)
清华大学信息科学与技术国家实验室资助项目~~
关键词
过程挖掘
过程发现
概念漂移
变更检测
process mining
process discovery
concept drift
change detection