期刊文献+

基于关系矩阵的工作流日志重复任务识别算法

Detecting duplicate tasks from workflow logs based on casual matrix
下载PDF
导出
摘要 针对传统工作流模型挖掘算法不考虑模型中重复任务的存在,导致挖掘出的模型精确度不高的问题,提出一种基于关系矩阵的重复任务识别方法。通过分析工作流执行日志得到所有事件的前驱后继关系,根据不同的模型结构进行事件重命名,再基于同类别重复事件之间的相似度对重复事件进行聚类得到最优识别结果。实验表明,该方法能正确有效地识别工作流日志中的重复任务,减少模型中的不可见任务,最终提高工作流模型挖掘方法的精确度和可理解性。 Aiming at the problem that the traditional process mining algorithms neglected the existence of duplicate tasks in workflow model, which led to the poor precision while using workflow logs produced by these models, a Split and Cluster (SaC) algorithm to detect duplicate tasks from workflow logs based on casual matrix was proposed. The algorithm obtained the casual matrix by analyzing the predecessors and successors of each event in workflow log, the events were relabeled according to specific model structure, and then the optimal result was obtained by clustering the repeating events based on the similarity of each duplicate event. Experimental results showed that SaC could detect duplicate tasks in log correctly and efficiently and reduce the invisible tasks, thus improved the precision and comprehensibility of workflow models.
作者 潘建梁 俞东进 陈耀旺 PAN Jianliang, YU Dongjin, CHEN Yaowang(School of Computing, Hangzhou Dianzi University, Hangzhou 310018, Chin)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2018年第7期1784-1792,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61472112) 浙江省重点研发资助项目(2017C01010 2016F50014 2015C01040)~~
关键词 工作流日志 工作流模型挖掘 重复任务 关系矩阵 任务聚类 workflow log workflow model mining duplicate tasks casual matrix task clustering
  • 相关文献

参考文献2

二级参考文献25

  • 1李嘉菲,刘大有,于万钧.一种能发现重复任务的过程挖掘算法[J].吉林大学学报(工学版),2007,37(1):106-110. 被引量:5
  • 2van der Aalst W M P,van Dongen B F,Herbst J,Maruster L,Schimm G,Weijters A J M M.Workflow mining:A survey of issues and approaches.Data and Knowledge Engineering,2003,47(2):237-267
  • 3de Medeiros A K A,van Dongen B F,van der Aalst W M P,Weijters A J M M.Process mining:Extending the α-algorithm to mine short loops.Eindhoven University of Technology,Eindhoven:BETA Working Paper Series WP 113,2004
  • 4de Medeiros A K A,van der Aalst W M P,Weijters A J M M.Workflow mining:Current status and future Directions//Meersman R,Tari Z,Schmidt DC.On the Move to Meaningful Internet Systems 2003:CoopIS,DOA,and ODBASE.Berlin:Springer-Verlag,2003:389-406
  • 5Agrawal R,Gunopulos D,Leymann F.Mining process models from workflow logs//Proceedings of the 6th International Conference on Extending Database Technology,Valencia,Spain,1998:469-483
  • 6Cook J E,Wolf A L.Discovering models of software processes from event-based data.ACM Transactions on Software Engineering and Methodology,1998,7(3):215-249
  • 7Cook J E,Du Zhi-Dian,Liu Chong-Bing,Wolf A L.Discovering models of behavior for concurrent workflows.Computer in Industry,2004,53(3):297-319
  • 8Herbst J,Karagiannis D.Integrating machine learning and workflow management to support acquisition and adaptation of workflow models.International Journal of Intelligent Systems in Accounting,Finance and Management,2000,9(2):67-92
  • 9Wen Li-Jie,Wang Jian-Min,Sun Jia-Guang.Detecting implicit dependencies between tasks from event logs//Zhou X,Lin X,Lu H et al.Proceedings of the 8th Asia-Pacific Web Conference.Lecture Notes in Computer Science 3841,Berlin:Springer-Verlag,2006:591-603
  • 10van der Aalst W M P,Weijters Ton,Maruster Laura.Workflow mining:Discovering process models from event logs.IEEE Transactions on Knowledge Data Engineering,2004,16(9):1128-1142

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部