期刊文献+

含乘性噪声图像的全变差恢复 被引量:1

Total Variation Multiplicative Noise Images Recovery
下载PDF
导出
摘要 被乘性噪声污染的图像会出现随机散布的小斑点.斑点会导致图像质量降低,严重影响图像的自动分割、定量分析、目标检测以及定量专题信息的提取等后处理.本文结合作者的以前工作阐述了基于全变差和加权全变差的乘性噪声去除问题.最后对可能研究的问题进行了描述. Abstract: Multiplicative noise shows as randomly scattered spots on images. The spots not only reduce the image quality, but also seriously affect the image segmentation, quantitative analysis and target detection and information extraction. The method of multiplicative noise removal based on total variation and iteratively reweighted total variation are summarized. The forecast of multiplicative noise removal study is presented on the basis of a systemic summary of the research status.
作者 王旭东 吕长青 赵海旭 WANG Xu-dong;LY Chang-qing;ZHAO Hai-xu(School of computer and Information Engineering,Guangxi Teachers Education University,Nanning 530299,China;School of Mathematics and Statistics,Zaozhuang University,Zaozhuang 277160,China)
出处 《枣庄学院学报》 2018年第5期64-69,共6页 Journal of Zaozhuang University
基金 广西自然科学基金资助(项目编号:2015GXNSFAA39309 2015GXNSFAA139312) 国家级大学生创新创业训练计划项目(项目编号:201710904032 201610904022)
关键词 图像去噪 乘性噪声 变分法 稀疏 Image denoising Multplicative noise Variation method Sparse
  • 相关文献

参考文献3

二级参考文献61

  • 1Aubert G,Aujol J.A nonconvex model to remove multiplica-tive noise.In:Proceedings of the1st International Conference on Scale Space and Variational Methods in Computer Vision.Ischia,Italy:Springer,2007.68-79.
  • 2Aubert G,Aujol J.A variational approach to removing multi-plicative noise.SIAM Journal on Applied Mathematics,2008,68 (4):925-946.
  • 3Jin Z M,Yang X P.Analysis of a new variation model for multiplicative noise removal.Journal of Mathematical Anal-ysis and Applications,2010,362(2):415-426.
  • 4Huang Y M,Ng M K,Wen Y W.A new total variation method for multiplicative noise removal.SIAM Journal on Imaging Sciences,2009,2(1):20-40.
  • 5Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms.Physica D:Nonlinear Phenomena,1992,60(1 -4):259-268.
  • 6Rudin L,Lions P L,Osher S.Multiplicative denoising and de-blurring:theory and algorithms.Geometric Level Set Meth-ods in Imaging,Vision and Graphics.New York:Springer,2003.103-119.
  • 7Geman S,Geman D.Stochastic relaxation,Gibbs distribu-tions,and the Bayesian restoration of images.IEEE Trans-actions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 8Li Y Y,Santosa F.A computational algorithm for minimiz-ing total variation in image restoration.IEEE Transactions on Image Processing,1996,5(6):987-995.
  • 9Lin Y Q,Lee D D.Bayesian L1-norm sparse learning.In:International Conference on Acoustics,Speech,and Signal Processing.Toulouse,France:IEEE,2006.605-608.
  • 10Nikolova M.Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least- squares.Multiscale Modelling and Simulation,2005,4(3):960-991.

共引文献22

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部