摘要
为了探究码头岸桥每次作业拉杆的载荷情况,更加准确评估拉杆的使用寿命并确定其维修周期,采用聚类算法与定量统计分析方法,对岸桥拉杆载荷进行分析。考虑到传统K均值算法在处理大规模数据时的局限性,在聚类思想的基础上,提出一种准确近似K均值算法(AAKM)。该算法在聚类数目K的初步确定和提高聚类算法的准确性方面实现了极大的改进,并利用试验结果进行了验证,结果表明该方法对于岸桥载荷状态的识别和工程应用中的监测与评估具有重要意义。
In order to study the crane's each work load situation of orbit,service life and determine its maintenance cycle,used clustering algorithm and quantitative statisticalanalysis method,rod load of the crane was analyzed. Considering the limitation of traditional K-means algorithm in dealing with large-scale data,an accurate approximate K-means algorithm (AAKM) wasproposed based on the clustering idea. The accurate of the algorithm in the preliminary determinationand improvement had greatly improved,and was verified by using the experimental resultssignificance for identification of crane load status and the engineering application of monitoring and evaluation.
作者
唐刚
李建霞
胡雄
TANGGang;LI Jianxia;HU XiongC(College of Logistics Engineering,Shanghai Maritime University,Shanghai 201306,China)
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期590-594,共5页
Journal of Donghua University(Natural Science)
基金
国家高新技术研究发展计划(863)资助项目(2013A20411606)
国家自然科学基金资助项目(31300783)
中国博士后科学基金资助项目(2014M561458)
教育部博士点基金联合资助项目(20123121120004)
上海高校一流学科--管理科学与工程资助项目
上海海事大学科研基金资助项目(20130474)
关键词
集装箱岸桥
K均值算法
描述性统计分析
类内差异
类间差异
container crane
K-means algorithm
descriptive statistical analysis
differences within the class
differences between classes