摘要
1000多年前,英国著名学者Alcuin曾提出一个古老的渡河问题,即狼、羊和卷心菜的渡河问题。2006年,Prisner把该问题推广到任意的冲突图上,考虑了一类情况更一般的渡河运输问题。所谓冲突图是指一个图G=(V,E),这里V代表某些物品的集合,V中的两个点有边连结当且仅当这两个点是冲突的,即在无人监管的情况下不允许留在一起的点。图G=(V,E)的一个可行运输方案是指在保证不发生任何冲突的前提下,把V的点所代表的物品全部摆渡到河对岸的一个运输方案。图G的Alcuin数定义为它存在可行运输方案时所需船的最小容量。本文讨论了覆盖数不超过3的连通图的Alcuin数,给出了该类图Alcuin数的完全刻画。
More than 1000 years ago, Alcuin of York proposed a classical puzzle involving a wolf, a goat and a bunch of cabbages that needed to be ferried across a river using a boat that only had enough room for one of them. In 2006, Prisner considered a transportation planning problem that generalizes Alcuin ' s river crossing problem to scenarios with arbitrary conflict graphs. In a conflict graph G = (V,E) , two vertices (items) of V are connected by an edge in E if and only if they are conflicting, and thus they cannot be left together without human supervision. A feasible schedule on a graph G = (V,E) is a plan that all items of V can be ferried across a river unhurt. The Alcuin number of G is the smallest possible capacity of a boat for which the graph G possesses a feasible schedule. In this paper we investigate the Aleuin number of connected graphs with cover number at most three and give a complete characterization on the Alcuin number for the graphs.
作者
朱恺丽
单而芳
ZHU Kai-li;SHAN Er-fang(School of Management,Shanghai University,Shanghai 200444,China)
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2018年第8期79-83,共5页
Operations Research and Management Science
基金
国家自然科学基金资助项目(11571222)
关键词
图论
渡河问题
覆盖数
Alcuin数
独立集
graph theory
river crossing
cover number
Alcuin number
independent set