期刊文献+

覆盖数不超过3的图上渡河问题 被引量:1

River Crossing Problem on Graphs with Cover Number at Most Three
下载PDF
导出
摘要 1000多年前,英国著名学者Alcuin曾提出一个古老的渡河问题,即狼、羊和卷心菜的渡河问题。2006年,Prisner把该问题推广到任意的冲突图上,考虑了一类情况更一般的渡河运输问题。所谓冲突图是指一个图G=(V,E),这里V代表某些物品的集合,V中的两个点有边连结当且仅当这两个点是冲突的,即在无人监管的情况下不允许留在一起的点。图G=(V,E)的一个可行运输方案是指在保证不发生任何冲突的前提下,把V的点所代表的物品全部摆渡到河对岸的一个运输方案。图G的Alcuin数定义为它存在可行运输方案时所需船的最小容量。本文讨论了覆盖数不超过3的连通图的Alcuin数,给出了该类图Alcuin数的完全刻画。 More than 1000 years ago, Alcuin of York proposed a classical puzzle involving a wolf, a goat and a bunch of cabbages that needed to be ferried across a river using a boat that only had enough room for one of them. In 2006, Prisner considered a transportation planning problem that generalizes Alcuin ' s river crossing problem to scenarios with arbitrary conflict graphs. In a conflict graph G = (V,E) , two vertices (items) of V are connected by an edge in E if and only if they are conflicting, and thus they cannot be left together without human supervision. A feasible schedule on a graph G = (V,E) is a plan that all items of V can be ferried across a river unhurt. The Alcuin number of G is the smallest possible capacity of a boat for which the graph G possesses a feasible schedule. In this paper we investigate the Aleuin number of connected graphs with cover number at most three and give a complete characterization on the Alcuin number for the graphs.
作者 朱恺丽 单而芳 ZHU Kai-li;SHAN Er-fang(School of Management,Shanghai University,Shanghai 200444,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2018年第8期79-83,共5页 Operations Research and Management Science
基金 国家自然科学基金资助项目(11571222)
关键词 图论 渡河问题 覆盖数 Alcuin数 独立集 graph theory river crossing cover number Alcuin number independent set
  • 相关文献

参考文献2

二级参考文献14

  • 1Folkerts M (ed), Alcuin F. Propositiones ad Acuendos hvenes (reprinted). Berlin: Springer, 1978.
  • 2Prisner E. Generalizing the wolf-goat-cabbage problem. Electron Notes Discrete Math, 2006, 27:83.
  • 3Csorba P, Hurkens C A J, Woeginger C J. The Alcuin number of a graph and its connections to the vertex cover number. SIAM Rev, 2012, 54:141-154.
  • 4Lampis M, Mitsou V. The ferry cover problem. In: Lecture Notes in Comput Sci, vol. 4475. Berlin: Springer, 2007, 227-239.
  • 5Csorba P, Hurkens C A J, Woeginger C J. The Alcuin number of a graph and its connections to the vertex cover number. SIAM J Discrete Math, 2010, 24:757-769.
  • 6Shan E F, Kang L Y. The Alcuin number of a graph with small maximum degree. SIAM J Discrete Math, in press, 2013.
  • 7Bondy J A, Murty U S R. Graph Theory. Berlin: Springer, 2008.
  • 8Prisner E. Generalizing the wolf-goat-cabbage problem [J]. Electron Notes Discrete Math, 2006, 27: 83.
  • 9Csorba P, Hurkens C A J, Woeginger C J. The Alcuin number of a graph and its connections to the vertex cover number [J]. SIAM Review, 2012, 54: 141-154.
  • 10Csorba P, Hurkens C A J, Woeginger C J. The Alcuin number of a graph and its connections to the vertex cover number [J]. SIAM J Discrete Math, 2010, 24: 757-769.

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部